1,623 research outputs found
Structural and vibrational properties of two-dimensional nanolayers on Pd(100)
Using different experimental techniques combined with density functional
based theoretical methods we have explored the formation of
interface-stabilized manganese oxide structures grown on Pd(100) at
(sub)monolayer coverage. Amongst the multitude of phases experimentally
observed we focus our attention on four structures which can be classified into
two distinct regimes, characterized by different building blocks. Two
oxygen-rich phases are described in terms of MnO(111)-like O-Mn-O trilayers,
whereas the other two have a lower oxygen content and are based on a
MnO(100)-like monolayer structure. The excellent agreement between calculated
and experimental scanning tunneling microscopy images and vibrational electron
energy loss spectra allows for a detailed atomic description of the explored
models.Comment: 14 pages, 11 figure
Quasar Parallax: a Method for Determining Direct Geometrical Distances to Quasars
We describe a novel method to determine direct geometrical distances to
quasars that can measure the cosmological constant, Lambda, with minimal
assumptions. This method is equivalent to geometric parallax, with the
`standard length' being the size of the quasar broad emission line region
(BELR) as determined from the light travel time measurements of reverberation
mapping. The effect of non-zero Lambda on angular diameter is large, 40% at
z=2, so mapping angular diameter distances vs. redshift will give Lambda with
(relative) ease. In principle these measurements could be made in the UV,
optical, near infrared or even X-ray bands. Interferometers with a resolution
of 0.01mas are needed to measure the size of the BELR in z=2 quasars, which
appear plausible given reasonable short term extrapolations of current
technology.Comment: 13 pages, with 3 figures. ApJ Letters, in press (Dec 20, 2002
Mid-Infrared line diagnostics of Active Galaxies -- A spectroscopic AGN survey with ISO-SWS
We present medium resolution (R approx. 1500) ISO-SWS 2.4--45 micron spectra
of a sample of 29 galaxies with active nuclei. This data set is rich in fine
structure emission lines tracing the narrow line regions and (circum-)nuclear
star formation regions, and it provides a coherent spectroscopic reference for
future extragalactic studies in the mid-infrared. We use the data set to
briefly discuss the physical conditions in the narrow line regions (density,
temperature, excitation, line profiles) and to test for possible differences
between AGN sub-types. Our main focus is on new tools for determining the
propertibes of dusty galaxies and on the AGN-starburst connection. We present
mid-IR line ratio diagrams which can be used to identify composite (starburst +
AGN) sources and to distinguish between emission excited by active nuclei and
emission from (circum-nuclear) star forming regions. For instance, line ratios
of high to low excitation lines like [O IV]25.9um/[Ne II]12.8um, that have been
used to probe for AGNs in dusty objects, can be examined in more detail and
with better statistics now. In addition, we present two-dimensional diagnostic
diagrams that are fully analogous to classical optical diagnostic diagrams, but
better suited for objects with high extinction. Finally, we discuss
correlations of mid-infrared line fluxes to the mid- and far-infrared
continuum. We compare these relations to similar relations in starburst
galaxies in order to examine the contribution of AGNs to the bolometric
luminosities of their host galaxies. The spectra are available in electronic
form from the authors.Comment: 24 pages, 23 figures, 5 tables. Accepted for A&
A view of the narrow-line region in the infrared: active galactic nuclei with resolved fine-structure lines in the Spitzer archive
We queried the Spitzer archive for high-resolution observations with the
Infrared Spectrograph of optically selected active galactic nuclei (AGN) for
the purpose of identifying sources with resolved fine-structure lines that
would enable studies of the narrow-line region (NLR) at mid-infrared
wavelengths. By combining 298 Spitzer spectra with 6 Infrared Space Observatory
spectra, we present kinematic information of the NLR for 81 z<=0.3 AGN. We used
the [NeV], [OIV], [NeIII], and [SIV] lines, whose fluxes correlate well with
each other, to probe gas photoionized by the AGN. We found that the widths of
the lines are, on average, increasing with the ionization potential of the
species that emit them. No correlation of the line width with the critical
density of the corresponding transition was found. The velocity dispersion of
the gas, sigma, is systematically higher than that of the stars, sigma_*, in
the AGN host galaxy, and it scales with the mass of the central black hole,
M_BH. Further correlations between the line widths and luminosities L, and
between L and M_BH, are suggestive of a three dimensional plane connecting
log(M_BH) to a linear combination of log(sigma) and log(L). Such a plane can be
understood within the context of gas motions that are driven by AGN feedback
mechanisms, or virialized gas motions with a power-law dependence of the NLR
radius on the AGN luminosity. The M_BH estimates obtained for 35 type 2 AGN
from this plane are consistent with those obtained from the M_BH-sigma_*
relation.Comment: ApJ, revised to match the print versio
The X-ray Emission from the Nucleus of the Dwarf Elliptical Galaxy NGC 3226
We present the first high resolution X-ray image of the dwarf elliptical
galaxy NGC 3226. The data were obtained during an observation of the nearby
Seyfert Galaxy NGC 3227 using the Chandra X-ray Observatory. We detect a point
X-ray source spatially consistent with the optical nucleus of NGC 3226 and a
recently-detected, compact, flat-spectrum, radio source. The X-ray spectrum can
be measured up to ~10 keV and is consistent with a power law with a photon
index 1.7 <~ Gamma <~ 2.2, or thermal bremmstrahlung emission with 4 <~ kT <~
10 keV. In both cases the luminosity in the 2--10 keV band ~10^{40} h_{75}^{-1}
erg/s. We find marginal evidence that the nucleus varies within the
observation. These characteristics support evidence from other wavebands that
NGC 3226 harbors a low-luminosity, active nucleus. We also comment on two
previously-unknown, fainter X-ray sources <~ 15 arcsec from the nucleus of NGC
3226. Their proximity to the nucleus (with projected distances <~ 1.3/h_{75}
kpc) suggests both are within NGC 3226, and thus have luminosities (~few x
10^{38} -- few x 10^{39} erg/s) consistent with black-hole binary systems.Comment: Accepted for publication in ApJ. Figures in colo
The Very Highly Ionized Broad Absorption Line System of the QSO SBS1542+541
We have analyzed the broad absorption line system of the bright (V=16.5)
high-redshift (z=2.361) QSO SBS1542+541 using UV spectra from the HST FOS along
with optical data from the MMT and the Steward Observatory 2.3m telescope.
These spectra give continuous wavelength coverage from 1200 to 8000 Angstroms,
corresponding to 340 to 2480 Angstroms in the QSO rest frame. This object
therefore offers a rare opportunity to study broad absorption lines in the
rest-frame extreme UV. We find that the absorption system is dominated by very
high-ionization species, including O VI, NeVIII, and SiXII. We also identify
apparently saturated broad Lyman-series lines of order Ly-gamma and higher.
There is strong evidence for partial occultation of the QSO emission source,
particularly from the higher-order Lyman lines which indicate a covered
fraction less than 0.2. Overall, the data suggest a correlation between a
larger covered fraction and a higher state of ionization. We suggest that the
different covered fractions can be explained by either a special line of sight
through a disk-like geometry or by the existence of density fluctuations of a
factor >2 in the BAL gas. Our photoionization models of the system indicate a
large column density and high ionization state similar to that found in X-ray
``warm absorbers''.Comment: 31 pages, 13 figures, to be published in Ap
Ionised outflows in z 2.4 quasar host galaxies
AGN-driven outflows are invoked by galaxy evolutionary models to quench star
formation and to explain the origin of the relations observed locally between
super massive black holes and their host galaxies. This work aims to detect the
presence of extended ionised outflows in luminous quasars where we expect the
maximum activity both in star formation and in black hole accretion. Currently,
there are only a few studies based on spatially resolved observations of
outflows at high redshift, . We analyse a sample of six luminous () quasars at , observed in H-band using the
near-IR integral field spectrometer SINFONI at VLT. We perform a kinematic
analysis of the [OIII] emission line at . [OIII] has a
complex gas kinematic, with blue-shifted velocities of a few hundreds of km/s
and line widths up to 1500 km/s. Using the spectroastrometric method we infer
size of the ionised outflows of up to 2 kpc. The properties of the
ionised outflows, mass outflow rate, momentum rate and kinetic power, are
correlated with the AGN luminosity. The increase in outflow rate with
increasing AGN luminosity is consistent with the idea that a luminous AGN
pushes away the surrounding gas through fast outflows driven by radiation
pressure, which depends on the emitted luminosity. We derive mass outflow rates
of about 6-700 M/yr for our sample, which are lower than those
observed in molecular outflows. Indeed physical properties of ionised outflows
show dependences on AGN luminosity which are similar to those of molecular
outflows but indicating that the mass of ionised gas is smaller than that of
the molecular one. Alternatively, this discrepancy between ionised and
molecular outflows could be explained with different acceleration mechanisms.Comment: 13 pages, 11 figures; accepted for publication in A&
Photometric AGN reverberation mapping - an efficient tool for BLR sizes, black hole masses and host-subtracted AGN luminosities
Photometric reverberation mapping employs a wide bandpass to measure the AGN
continuum variations and a suitable band, usually a narrow band (NB), to trace
the echo of an emission line in the broad line region (BLR). The narrow band
catches both the emission line and the underlying continuum, and one needs to
extract the pure emission line light curve. We performed a test on two local
AGNs, PG0003+199 (=Mrk335) and Ark120, observing well-sampled broad- (B, V) and
narrow-band light curves with the robotic 15cm telescope VYSOS-6 on Cerro
Armazones, Chile. In PG0003+199, H_alpha dominates the flux in the NB by 85%,
allowing us to measure the time lag of H_alpha against B without the need to
correct for the continuum contribution. In Ark120, H_beta contributes only 50%
to the flux in the NB. The cross correlation of the B and NB light curves shows
two distinct peaks of similar strength, one at lag zero from the autocorrelated
continuum and one from the emission line at tau_cent = 47.5 +/- 3.4 days. We
constructed a synthetic H_beta light curve, by subtracting a scaled V light
curve, which traces the continuum, from the NB light curve. The cross
correlation of this synthetic H_beta light curve with the B light curve shows
only one major peak at tau_cent = 48.0 +/- 3.3 days, while the peak from the
autocorrelated continuum at lag zero is absent. We conclude that, as long as
the emission line contributes at least 50% to the bandpass, the pure emission
line light curve can be reconstructed from photometric monitoring data so that
the time lag can be measured. For both objects the lags we find are consistent
with spectroscopic reverberation results. While the dense sampling (median 2
days) enables us to determine tau_cent with small (10%) formal errors, we
caution that gaps in the light curves may lead to much larger systematic
uncertainties. (Abstract shortened, see the manuscript.)Comment: 12 pages, 15 figures, accepted for publication in Astronomy and
Astrophysic
- …
