235 research outputs found
The potential direct economic impact and private management costs of an invasive alien species:Xylella fastidiosa on Lebanese wine grapes
Since its outbreak in 2013 in Italy, the harmful bacterium Xylella fastidiosa has continued to spread through-out the Euro-Mediterranean basin and, more recently, in the Middle East region. Xylella fastidiosa subsp. fastidiosa is the causal agent of Pierce’s disease on grapevines. At present, this alien subspecies has not been reported in Lebanon but if this biological invader was to spread with no cost-effective and sustainable management, it would put Lebanese vineyards at a certain level of risk. In the absence of an Xylella fastidiosa subsp. fastidiosa outbreak, the gross revenue generated by Lebanese wine growers is estimated as close to US 11 million for an average recovery period of4 years, to around US853 per potentially infected hectare. For a recovery period of 4 years, the aggregate estimated additional cost would reach US-4046/ha. Furthermore, additional work will be needed to estimate the public costs of an Xylella fastidiosa subsp. fastidiosa outbreak in Lebanon. The observed costs in this study support the concerned policy makers and stakeholders to implement a set of reduction management options against Xylella fastidiosa subsp. fastidiosa at both national and wine growers’ levels. This re-emerging alien biota should not be neglected in this country. This understanding of thepotential direct economic impact of Xylella fastidiosa subsp. fastidiosa and the private management costs can also benefit further larger-scale studies covering other potential infection areas and plant hosts
Cardiac overexpression of melusin protects from dilated cardiomyopathy due to long-standing pressure overload.
We have previously shown that genetic ablation of melusin, a muscle specific beta 1 integrin interacting protein, accelerates left ventricle (LV) dilation and heart failure in response to pressure overload. Here we show that melusin expression was increased during compensated cardiac hypertrophy in mice subjected to 1 week pressure overload, but returned to basal levels in LV that have undergone dilation after 12 weeks of pressure overload. To better understand the role of melusin in cardiac remodeling, we overexpressed melusin in heart of transgenic mice. Echocardiography analysis indicated that melusin over-expression induced a mild cardiac hypertrophy in basal conditions (30% increase in interventricular septum thickness) with no obvious structural and functional alterations. After prolonged pressure overload (12 weeks), melusin overexpressing hearts underwent further hypertrophy retaining concentric LV remodeling and full contractile function, whereas wild-type LV showed pronounced chamber dilation with an impaired contractility. Analysis of signaling pathways indicated that melusin overexpression induced increased basal phosphorylation of GSK3beta and ERK1/2. Moreover, AKT, GSK3beta and ERK1/2 were hyper-phosphorylated on pressure overload in melusin overexpressing compared with wild-type mice. In addition, after 12 weeks of pressure overload LV of melusin overexpressing mice showed a very low level of cardiomyocyte apoptosis and stromal tissue deposition, as well as increased capillary density compared with wild-type. These results demonstrate that melusin overexpression allows prolonged concentric compensatory hypertrophy and protects against the transition toward cardiac dilation and failure in response to long-standing pressure overload
New insight into the identity of italian grapevine varieties: The case study of calabrian germplasm
Calabria is a region located in Southern Italy and it is characterized by a long tradition of viticulture practices and favorable pedoclimatic conditions for grapevine cultivation. Nevertheless, less than 2% of cultivated land is dedicated to grapevine growing in Calabria. The characterization of local grapevine accessions is crucial to valorize the local and peculiar Italian products and boost the Calabrian winemaking sector. With this purpose, we performed a deep characterization of two widespread Calabrian grapevine varieties—Magliocco Dolce and Brettio Nero, of which very little is known. In particular, a genetic and morphological analysis, a berry physico-chemical and polyphenolic compositions assessment, and oenological evaluation of monovarietal wines were carried out. Our results allowed us to demonstrate that Magliocco Dolce and Brettio Nero are unique and distinct varieties with peculiar morphological and chemical characteristics and show the suitability of these two varieties in high-quality wine production. Moreover, the obtained molecular profiles will be useful for authentication and traceability purposes
Screening of olive germplasm for resistance to Xylella fastidiosa ST53: the state of the art
While different sources of natural resistance to X. fastidiosa have been described in grapevines and citrus, lack of solid information exists on possible sources of resistance/tolerance in the cultivars that characterize the wide olive germplasm. Preliminary field observations and laboratory analyses of a few cultivars, have shown that differential responses to X. fastidiosa infections exist. To
confirm these preliminary findings, a large panel of olive cultivars is being specifically investigated. Currently, the screening procedure relies on field observations looking for symptomless subjects (trees of known cultivars/volunteer seedlings), mechanical inoculations, qualitative and quantitative diagnostic assays (ELISA & qPCR) and, in selected cases, comparative transcriptomic profiling. Field experiments include the planting of the target cultivars/selections in an infected area under high inoculum pressure. All the plots are located in the Apulia Region (Italy) in the demarcated infected area, surrounded by X. fastidiosa heavily affected olive groves. A first experimental plot was established in April 2015 with 10 different cultivars, which was extended in 2016 to 49 cultivars, and will be further enlarged in 2017 with the addition of 40 new accessions. Other plots, comprising newly planted or grafted cultivars (over 260 cvs) have been also established, bringing to over 300 the total number of accessions under evaluation. Cvs Leccino and FS-17®, both expressing interesting traits of resistance, have already been identified
Effects of climate and land-use changes on fish catches across lakes at a global scale
Globally, our knowledge on lake fisheries is still limited despite their importance to food security and livelihoods. Here we show that fish catches can respond either positively or negatively to climate and land-use changes, by analyzing time-series data (1970–2014) for 31 lakes across five continents. We find that effects of a climate or land-use driver (e.g., air temperature) on lake environment could be relatively consistent in directions, but consequential changes in a lake-environmental factor (e.g., water temperature) could result in either increases or decreases in fish catch in a given lake. A subsequent correlation analysis indicates that reductions in fish catch was less likely to occur in response to potential climate and land-use changes if a lake is located in a region with greater access to clean water. This finding suggests that adequate investments for water-quality protection and water-use efficiency can provide additional benefits to lake fisheries and food security
Neuregulin Promotes Incomplete Autophagy of Prostate Cancer Cells That Is Independent of mTOR Pathway Inhibition
Growth factors activating the ErbB receptors have been described in prostate tumors. The androgen dependent prostate cancer cell line, LNCaP, expresses the ErbB-1, ErbB-2 and ErbB-3 receptor tyrosine kinases. Previously, it was demonstrated that NRG activates ErbB-2/ErbB-3 heterodimers to induce LNCaP cell death, whereas, EGF activates ErbB-1/ErbB-1 or ErbB-1/ErbB-2 dimers to induce cell growth and survival. It was also demonstrated that PI3K inhibitors repressed this cell death suggesting that in androgen deprived LNCaP cells, NRG activates a PI3K-dependent pathway associated with cell death.In the present study we demonstrate that NRG induces autophagy in LNCaP cells, using LC3 as a marker. However, the autophagy induced by NRG may be incomplete since p62 levels elevate. We also demonstrated that NRG- induced autophagy is independent of mammalian target of rapamycin (mTOR) inhibition since NRG induces Akt and S6K activation. Interestingly, inhibition of reactive oxygen species (ROS) by N-acetylcysteine (NAC), inhibited NRG-induced autophagy and cell death. Our study also identified JNK and Beclin 1 as important components in NRG-induced autophagy and cell death. NRG induced elevation in JNK phosphorylation that was inhibited by NAC. Moreover, inhibitor of JNK inhibited NRG-induced autophagy and cell death. Also, in cells overexpressing Bcl-2 or cells expressing sh-RNA against Beclin 1, the effects of NRG, namely induction of autophagy and cell death, were inhibited.Thus, in LNCaP cells, NRG-induces incomplete autophagy and cell death that depend on ROS levels. These effects of NRG are mediated by signaling pathway that activates JNK and Beclin 1, but is independent of mTOR inhibition
Head and neck cancer surgery during the COVID-19 pandemic : An international, multicenter, observational cohort study
Background: The aims of this study were to provide data on the safety of head and neck cancer surgery currently being undertaken during the coronavirus disease 2019 (COVID-19) pandemic. Methods: This international, observational cohort study comprised 1137 consecutive patients with head and neck cancer undergoing primary surgery with curative intent in 26 countries. Factors associated with severe pulmonary complications in COVID-19–positive patients and infections in the surgical team were determined by univariate analysis. Results: Among the 1137 patients, the commonest sites were the oral cavity (38%) and the thyroid (21%). For oropharynx and larynx tumors, nonsurgical therapy was favored in most cases. There was evidence of surgical de-escalation of neck management and reconstruction. Overall 30-day mortality was 1.2%. Twenty-nine patients (3%) tested positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) within 30 days of surgery; 13 of these patients (44.8%) developed severe respiratory complications, and 3.51 (10.3%) died. There were significant correlations with an advanced tumor stage and admission to critical care. Members of the surgical team tested positive within 30 days of surgery in 40 cases (3%). There were significant associations with operations in which the patients also tested positive for SARS-CoV-2 within 30 days, with a high community incidence of SARS-CoV-2, with screened patients, with oral tumor sites, and with tracheostomy. Conclusions: Head and neck cancer surgery in the COVID-19 era appears safe even when surgery is prolonged and complex. The overlap in COVID-19 between patients and members of the surgical team raises the suspicion of failures in cross-infection measures or the use of personal protective equipment. Lay Summary: Head and neck surgery is safe for patients during the coronavirus disease 2019 pandemic even when it is lengthy and complex. This is significant because concerns over patient safety raised in many guidelines appear not to be reflected by outcomes, even for those who have other serious illnesses or require complex reconstructions. Patients subjected to suboptimal or nonstandard treatments should be carefully followed up to optimize their cancer outcomes. The overlap between patients and surgeons testing positive for severe acute respiratory syndrome coronavirus 2 is notable and emphasizes the need for fastidious cross-infection controls and effective personal protective equipment
Broadband Quantum Enhancement of the LIGO Detectors with Frequency-Dependent Squeezing
Quantum noise imposes a fundamental limitation on the sensitivity of interferometric gravitational-wave detectors like LIGO, manifesting as shot noise and quantum radiation pressure noise. Here, we present the first realization of frequency-dependent squeezing in full-scale gravitational-wave detectors, resulting in the reduction of both shot noise and quantum radiation pressure noise, with broadband detector enhancement from tens of hertz to several kilohertz. In the LIGO Hanford detector, squeezing reduced the detector noise amplitude by a factor of 1.6 (4.0 dB) near 1 kHz; in the Livingston detector, the noise reduction was a factor of 1.9 (5.8 dB). These improvements directly impact LIGO's scientific output for high-frequency sources (e.g., binary neutron star postmerger physics). The improved low-frequency sensitivity, which boosted the detector range by 15%-18% with respect to no squeezing, corresponds to an increase in the astrophysical detection rate of up to 65%. Frequency-dependent squeezing was enabled by the addition of a 300-meter-long filter cavity to each detector as part of the LIGO A+ upgrade
The ‘rising power’ status and the evolution of international order : conceptualising Russia’s Syria policies
Taking Syria’s armed conflict as a case study to illustrate processes of normative contestation in international relations, this paper is interested in re-examining the typology of Russia as a ‘rising power’ to account for ‘rise’ in a non-material dimension. The article embeds the ‘rising power’ label in the literature on international norm dynamics to reflect on the rationale for Russia’s engagement in Syria despite adverse material preconditions. It will be argued that Russian norm divergence from alleged ‘Western’ norms illustrates the ambition to co-define conditions for legitimate transgressions of state sovereignty
- …
