245 research outputs found
Attractions between charged colloids at water interfaces
The effective potential between charged colloids trapped at water interfaces
is analyzed. It consists of a repulsive electrostatic and an attractive
capillary part which asymptotically both show dipole--like behavior. For
sufficiently large colloid charges, the capillary attraction dominates at large
separations.
The total effective potential exhibits a minimum at intermediate separations
if the Debye screening length of water and the colloid radius are of comparable
size.Comment: 8 pages, 1 figure, revised version (one paragraph added) accepted in
JPC
Free energies, vacancy concentrations and density distribution anisotropies in hard--sphere crystals: A combined density functional and simulation study
We perform a comparative study of the free energies and the density
distributions in hard sphere crystals using Monte Carlo simulations and density
functional theory (employing Fundamental Measure functionals). Using a recently
introduced technique (Schilling and Schmid, J. Chem. Phys 131, 231102 (2009))
we obtain crystal free energies to a high precision. The free energies from
Fundamental Measure theory are in good agreement with the simulation results
and demonstrate the applicability of these functionals to the treatment of
other problems involving crystallization. The agreement between FMT and
simulations on the level of the free energies is also reflected in the density
distributions around single lattice sites. Overall, the peak widths and
anisotropy signs for different lattice directions agree, however, it is found
that Fundamental Measure theory gives slightly narrower peaks with more
anisotropy than seen in the simulations. Among the three types of Fundamental
Measure functionals studied, only the White Bear II functional (Hansen-Goos and
Roth, J. Phys.: Condens. Matter 18, 8413 (2006)) exhibits sensible results for
the equilibrium vacancy concentration and a physical behavior of the chemical
potential in crystals constrained by a fixed vacancy concentration.Comment: 17 pages, submitted to Phys. Rev.
Production Processes as a Tool to Study Parameterizations of Quark Confinement
We introduce diquarks as separable correlations in the two-quark Green's
function to facilitate the description of baryons as relativistic three-quark
bound states. These states then emerge as solutions of Bethe-Salpeter equations
for quarks and diquarks that interact via quark exchange. When solving these
equations we consider various dressing functions for the free quark and diquark
propagators that prohibit the existence of corresponding asymptotic states and
thus effectively parameterize confinement. We study the implications of
qualitatively different dressing functions on the model predictions for the
masses of the octet baryons as well as the electromagnetic and strong form
factors of the nucleon. For different dressing functions we in particular
compare the predictions for kaon photoproduction, , and
associated strangeness production, with experimental data.
This leads to conclusions on the permissibility of different dressing
functions.Comment: 43 pages, Latex, 28 eps files included via epsfig; version to be
published in Physical Review
Effective interactions of colloids on nematic films
The elastic and capillary interactions between a pair of colloidal particles
trapped on top of a nematic film are studied theoretically for large
separations . The elastic interaction is repulsive and of quadrupolar type,
varying as . For macroscopically thick films, the capillary interaction
is likewise repulsive and proportional to as a consequence of
mechanical isolation of the system comprised of the colloids and the interface.
A finite film thickness introduces a nonvanishing force on the system (exerted
by the substrate supporting the film) leading to logarithmically varying
capillary attractions. However, their strength turns out to be too small to be
of importance for the recently observed pattern formation of colloidal droplets
on nematic films.Comment: 13 pages, accepted by EPJ
Mesons in a Poincare Covariant Bethe-Salpeter Approach
We develop a covariant approach to describe the low-lying scalar,
pseudoscalar, vector and axialvector mesons as quark-antiquark bound states.
This approach is based on an effective interaction modeling of the
non--perturbative structure of the gluon propagator that enters the quark
Schwinger-Dyson and meson Bethe-Salpeter equations. We consistently treat these
integral equations by precisely implementing the quark propagator functions
that solve the Schwinger-Dyson equations into the Bethe-Salpeter equations in
the relevant kinematical region. We extract the meson masses and compute the
pion and kaon decay constants. We obtain a quantitatively correct description
for pions, kaons and vector mesons while the calculated spectra of scalar and
axialvector mesons suggest that their structure is more complex than being
quark-antiquark bound states.Comment: 18 pages LaTeX, 5 figures; some changes in the presentation, new
results on axial vector mesons in enlarged mixing scheme; version to be
published in Physical Review
Curvature Dependence of Surface Free Energy of Liquid Drops and Bubbles: A Simulation Study
We study the excess free energy due to phase coexistence of fluids by Monte
Carlo simulations using successive umbrella sampling in finite LxLxL boxes with
periodic boundary conditions. Both the vapor-liquid phase coexistence of a
simple Lennard-Jones fluid and the coexistence between A-rich and B-rich phases
of a symmetric binary (AB) Lennard-Jones mixture are studied, varying the
density rho in the simple fluid or the relative concentration x_A of A in the
binary mixture, respectively. The character of phase coexistence changes from a
spherical droplet (or bubble) of the minority phase (near the coexistence
curve) to a cylindrical droplet (or bubble) and finally (in the center of the
miscibility gap) to a slab-like configuration of two parallel flat interfaces.
Extending the analysis of M. Schrader, P. Virnau, and K. Binder [Phys. Rev. E
79, 061104 (2009)], we extract the surface free energy gamma (R) of both
spherical and cylindrical droplets and bubbles in the vapor-liquid case, and
present evidence that for R -> Infinity the leading order (Tolman) correction
for droplets has sign opposite to the case of bubbles, consistent with the
Tolman length being independent on the sign of curvature. For the symmetric
binary mixture the expected non-existence of the Tolman length is confirmed. In
all cases {and for a range of radii} R relevant for nucleation theory, gamma(R)
deviates strongly from gamma (Infinity) which can be accounted for by a term of
order gamma(Infinity)/gamma(R)-1 ~ 1/R^2. Our results for the simple
Lennard-Jones fluid are also compared to results from density functional theory
and we find qualitative agreement in the behavior of gamma(R) as well as in the
sign and magnitude of the Tolman length.Comment: 25 pages, submitted to J. Chem. Phy
Free energy of colloidal particles at the surface of sessile drops
The influence of finite system size on the free energy of a spherical
particle floating at the surface of a sessile droplet is studied both
analytically and numerically. In the special case that the contact angle at the
substrate equals a capillary analogue of the method of images is
applied in order to calculate small deformations of the droplet shape if an
external force is applied to the particle. The type of boundary conditions for
the droplet shape at the substrate determines the sign of the capillary
monopole associated with the image particle. Therefore, the free energy of the
particle, which is proportional to the interaction energy of the original
particle with its image, can be of either sign, too. The analytic solutions,
given by the Green's function of the capillary equation, are constructed such
that the condition of the forces acting on the droplet being balanced and of
the volume constraint are fulfilled. Besides the known phenomena of attraction
of a particle to a free contact line and repulsion from a pinned one, we
observe a local free energy minimum for the particle being located at the drop
apex or at an intermediate angle, respectively. This peculiarity can be traced
back to a non-monotonic behavior of the Green's function, which reflects the
interplay between the deformations of the droplet shape and the volume
constraint.Comment: 24 pages, 19 figure
Integral equations for simple fluids in a general reference functional approach
The integral equations for the correlation functions of an inhomogeneous
fluid mixture are derived using a functional Taylor expansion of the free
energy around an inhomogeneous equilibrium distribution. The system of
equations is closed by the introduction of a reference functional for the
correlations beyond second order in the density difference from the equilibrium
distribution. Explicit expressions are obtained for energies required to insert
particles of the fluid mixture into the inhomogeneous system. The approach is
illustrated by the determination of the equation of state of a simple,
truncated Lennard--Jones fluid and the analysis of the behavior of this fluid
near a hard wall. The wall--fluid integral equation exhibits complete drying
and the corresponding coexisting densities are in good agreement with those
obtained from the standard (Maxwell) construction applied to the bulk fluid.
Self--consistency of the approach is examined by analyzing the
virial/compressibility routes to the equation of state and the Gibbs--Duhem
relation for the bulk fluid, and the contact density sum rule and the Gibbs
adsorption equation for the hard wall problem. For the bulk fluid, we find good
self--consistency for stable states outside the critical region. For the hard
wall problem, the Gibbs adsorption equation is fulfilled very well near phase
coexistence where the adsorption is large.For the contact density sum rule, we
find some deviationsnear coexistence due to a slight disagreement between the
coexisting density for the gas phase obtained from the Maxwell construction and
from complete drying at the hard wall.Comment: 29 page
Nucleon mass and pion loops: Renormalization
Using Dyson--Schwinger equations, the nucleon propagator is analyzed
nonperturbatively in a field--theoretical model for the pion--nucleon
interaction. Infinities are circumvented by using pion--nucleon form factors
which define the physical scale. It is shown that the correct, finite,
on--shell nucleon renormalization is important for the value of the mass--shift
and the propagator. For physically acceptable forms of the pion--nucleon form
factor the rainbow approximation together with renormalization is inconsistent.
Going beyond the rainbow approximation, the full pion--nucleon vertex is
modelled by its bare part plus a one--loop correction including an effective
. It is found that a consistent value for the nucleon mass--shift can
be obtained as a consequence of a subtle interplay between wave function and
vertex renormalization. Furthermore, the bare and renormalized pion--nucleon
coupling constant are approximately equal, consistent with results from the
Cloudy Bag Model.Comment: 14 pages, 6 figure
Diquarks: condensation without bound states
We employ a bispinor gap equation to study superfluidity at nonzero chemical
potential: mu .neq. 0, in two- and three-colour QCD. The two-colour theory,
QC2D, is an excellent exemplar: the order of truncation of the quark-quark
scattering kernel: K, has no qualitative impact, which allows a straightforward
elucidation of the effects of mu when the coupling is strong. In rainbow-ladder
truncation, diquark bound states appear in the spectrum of the three-colour
theory, a defect that is eliminated by an improvement of K. The corrected gap
equation describes a superfluid phase that is semi-quantitatively similar to
that obtained using the rainbow truncation. A model study suggests that the
width of the superfluid gap and the transition point in QC2D provide reliable
quantitative estimates of those quantities in QCD.Comment: 7 pages, 3 figures, REVTEX, epsfi
- …
