1,451 research outputs found
Near infrared observations of quasars with extended ionized envelopes
We have observed a sample of 15 and 8 quasars with redshifts between 0.11 and
0.87 (mean value 0.38) in the J and K' bands respectively. Eleven of the
quasars were previously known to be associated with extended emission line
regions. After deconvolution of the image, substraction of the PSF when
possible, and identification of companions with the help of HST archive images
when available, extensions are seen for at least eleven quasars. However,
average profiles are different from that of the PSF in only four objects, for
which a good fit is obtained with an law, suggesting that the
underlying galaxies are ellipticals. Redshifts were available in the literature
for surrounding objects in five quasar fields. For these objects, one to five
companion galaxies were found. One quasar even belongs to a richness class 1
cluster. Most other quasars in our sample have nearby galaxies in projection
which may also be companions. Environmental effects are therefore probably
important to account for the properties of these objects.Comment: Accepted for publication in A&A
Integral field spectroscopy of the radio galaxy 3C 171
We have performed integral field spectroscopy of the radio galaxy 3C 171
(redshift z=0.238) with the TIGER instrument at the Canada France Hawaii
telescope in the Hbeta-[OIII]4959-5007 wavelength region. We present the
reconstructed Hbeta and [OIII] images and compare them to the HST and radio
maps. We discuss the variations of the [OIII]/Hbeta line ratio throughout the
nebulosity. We also analyze the velocity field in detail, in particular the
presence of several components. We find that the kinematics derived with
emission lines in the central region (inside 1 arcsec) are compatible with a
disk-like rotation of low amplitude (50 km/s). The continuum surface brightness
profile follows an r^{1/4} law, suggesting that the underlying galaxy is an
elliptical with an effective radius of 15 kpc.
We have fit two components in the region centered 2.7 arcsec to the West and
of extension 3 arcsec^2. We find that the blueshifted component is an extension
of the central part, whereas the second one is redshifted by 600 km/s. In both
components, line ratios and FWHM are compatible with the presence of shocks
induced by jet-cloud interactions.Comment: 8 pages, 15 figures. Accepted for publication in A&A Main Journal
(July, 3rd
GRBs and fundamental physics
Gamma-ray bursts (GRBs) are short and intense flashes at the cosmological
distances, which are the most luminous explosions in the Universe. The high
luminosities of GRBs make them detectable out to the edge of the visible
universe. So, they are unique tools to probe the properties of high-redshift
universe: including the cosmic expansion and dark energy, star formation rate,
the reionization epoch and the metal evolution of the Universe. First, they can
be used to constrain the history of cosmic acceleration and the evolution of
dark energy in a redshift range hardly achievable by other cosmological probes.
Second, long GRBs are believed to be formed by collapse of massive stars. So
they can be used to derive the high-redshift star formation rate, which can not
be probed by current observations. Moreover, the use of GRBs as cosmological
tools could unveil the reionization history and metal evolution of the
Universe, the intergalactic medium (IGM) properties and the nature of first
stars in the early universe. But beyond that, the GRB high-energy photons can
be applied to constrain Lorentz invariance violation (LIV) and to test
Einstein's Equivalence Principle (EEP). In this paper, we review the progress
on the GRB cosmology and fundamental physics probed by GRBs.Comment: 38 pages, 18 figures, Review based on ISSI workshop "Gamma-Ray
Bursts: a Tool to Explore the Young Universe" (2015, Beijing, China),
accepted for publication in Space Science Review
Semiclassical gaps in the density of states of chaotic Andreev billiards
The connection of a superconductor to a chaotic ballistic quantum dot leads
to interesting phenomena, most notably the appearance of a hard gap in its
excitation spectrum. Here we treat such an Andreev billiard semiclassically
where the density of states is expressed in terms of the classical trajectories
of electrons (and holes) that leave and return to the superconductor. We show
how classical orbit correlations lead to the formation of the hard gap, as
predicted by random matrix theory in the limit of negligible Ehrenfest time
\tE, and how the influence of a finite \tE causes the gap to shrink.
Furthermore, for intermediate \tE we predict a second gap below E=\pi\hbar
/2\tE which would presumably be the clearest signature yet of \tE-effects.Comment: Refereed version. 4 pages, 3 figure
The Advantage of Increased Resolution in the Study of Quasar Absorption Systems
We compare a new R = 120,000 spectrum of PG1634+706 (z_QSO = 1.337,m_V =
14.9) obtained with the HDS instrument on Subaru to a R = 45, 000 spectrum
obtained previously with HIRES/Keck. In the strong MgII system at z = 0.9902
and the multiple cloud, weak MgII system at z = 1.0414, we find that at the
higher resolution, additional components are resolved in a blended profile. We
find that two single-cloud weak MgII absorbers were already resolved at R =
45,000, to have b = 2 - 4 km/s. The narrowest line that we measure in the R =
120, 000 spectrum is a component of the Galactic NaI absorption, with b =
0.90+/-0.20 km/s. We discuss expectations of similarly narrow lines in various
applications, including studies of DLAs, the MgI phases of strong MgII
absorbers, and high velocity clouds. By applying Voigt profile fitting to
synthetic lines, we compare the consistency with which line profile parameters
can be accurately recovered at R = 45,000 and R = 120,000. We estimate the
improvement gained from superhigh resolution in resolving narrowly separated
velocity components in absorption profiles. We also explore the influence of
isotope line shifts and hyperfine splitting in measurements of line profile
parameters, and the spectral resolution needed to identify these effects. Super
high resolution spectra of quasars, which will be routinely possible with
20-meter class telescopes, will lead to greater sensitivity for absorption line
surveys, and to determination of more accurate physical conditions for cold
phases of gas in various environments.Comment: To appear in AJ. Paper with better resolution images available at
http://www.astro.psu.edu/users/anand/superhigh.AJ.pd
High resolution study of associated C IV absorption systems in NGC 5548
We present the results of a careful analysis of associated absorption systems
toward NGC 5548. Most of the well resolved narrow components in the associated
system, defined by the Lyman alpha, C IV and N V profiles, show velocity
separation similar (to within 10~\kms) to the C IV doublet splitting. We
estimate the chance probability of occurrence of such pairs with velocity
separation equal to C IV doublet splitting to be . Thus it is
more likely that most of the narrow components are line-locked with C IV
doublet splitting. This will mean that the radiative acceleration plays an
important role in the kinematics of the absorbing clouds. We build grids of
photoionization models and estimate the radiative acceleration due to all
possible bound-bound transitions. We show that the clouds producing absorption
have densities less than , and are in the outer regions of the
broad emission line region (BLR). We note that the clouds which are line-locked
cannot produce appreciable optical depths of O VII and O VIII, and hence cannot
be responsible for the observed ionized edges, in the soft X-ray. We discuss
the implications of the presence of optically thin clouds in the outer regions
of the BLR to the models of broad emission lines.Comment: 21 pages, latex (aasms4 style), incluedes 4 ps figures. To appear in
Astrophysical Journa
The density of states of chaotic Andreev billiards
Quantum cavities or dots have markedly different properties depending on
whether their classical counterparts are chaotic or not. Connecting a
superconductor to such a cavity leads to notable proximity effects,
particularly the appearance, predicted by random matrix theory, of a hard gap
in the excitation spectrum of quantum chaotic systems. Andreev billiards are
interesting examples of such structures built with superconductors connected to
a ballistic normal metal billiard since each time an electron hits the
superconducting part it is retroreflected as a hole (and vice-versa). Using a
semiclassical framework for systems with chaotic dynamics, we show how this
reflection, along with the interference due to subtle correlations between the
classical paths of electrons and holes inside the system, are ultimately
responsible for the gap formation. The treatment can be extended to include the
effects of a symmetry breaking magnetic field in the normal part of the
billiard or an Andreev billiard connected to two phase shifted superconductors.
Therefore we are able to see how these effects can remold and eventually
suppress the gap. Furthermore the semiclassical framework is able to cover the
effect of a finite Ehrenfest time which also causes the gap to shrink. However
for intermediate values this leads to the appearance of a second hard gap - a
clear signature of the Ehrenfest time.Comment: Refereed version. 23 pages, 19 figure
Scattering induced dynamical entanglement and the quantum-classical correspondence
The generation of entanglement produced by a local potential interaction in a
bipartite system is investigated. The degree of entanglement is contrasted with
the underlying classical dynamics for a Rydberg molecule (a charged particle
colliding on a kicked top). Entanglement is seen to depend on the structure of
classical phase-space rather than on the global dynamical regime. As a
consequence regular classical dynamics can in certain circumstances be
associated with higher entanglement generation than chaotic dynamics. In
addition quantum effects also come into play: for example partial revivals,
which are expected to persist in the semiclassical limit, affect the long time
behaviour of the reduced linear entropy. These results suggest that
entanglement may not be a pertinent universal signature of chaos.Comment: Published versio
Automatic alignment of surgical videos using kinematic data
Over the past one hundred years, the classic teaching methodology of "see
one, do one, teach one" has governed the surgical education systems worldwide.
With the advent of Operation Room 2.0, recording video, kinematic and many
other types of data during the surgery became an easy task, thus allowing
artificial intelligence systems to be deployed and used in surgical and medical
practice. Recently, surgical videos has been shown to provide a structure for
peer coaching enabling novice trainees to learn from experienced surgeons by
replaying those videos. However, the high inter-operator variability in
surgical gesture duration and execution renders learning from comparing novice
to expert surgical videos a very difficult task. In this paper, we propose a
novel technique to align multiple videos based on the alignment of their
corresponding kinematic multivariate time series data. By leveraging the
Dynamic Time Warping measure, our algorithm synchronizes a set of videos in
order to show the same gesture being performed at different speed. We believe
that the proposed approach is a valuable addition to the existing learning
tools for surgery.Comment: Accepted at AIME 201
The Relationship Between Galaxies and Low Redshift Weak Lyman alpha Absorbers in the Directions of H1821+643 and PG1116+215
To study the nature of low z Lya absorbers in the spectra of QSOs, we have
obtained high signal-to-noise UV spectra of H 1821+643 (z = 0.297) and PG
1116+215 (z = 0.177) with the GHRS on the HST. The spectra have minimum S/N of
70-100 and 3 sigma limiting equivalent widths of 50-75 mA. We detect 26 Lya
lines with Wr > 50 mA toward H1821+643 and 13 toward PG1116+215, which implies
a density of 102+/-16 lines per unit redshift. The two-point correlation
function shows marginal evidence of clustering on ~500 km/s scales, but only if
the weakest lines are excluded. We have also used the WIYN Observatory to
measure galaxy redshifts in the ~1 degree fields centered on each QSO. We find
17 galaxy-absorber pairs within projected distances of 1 Mpc with velocity
separations of 350 km/s or less. Monte Carlo simulations show that if the Lya
lines are randomly distributed, the probability of observing this many close
pairs is 3.6e-5. We find that all galaxies with projected distances of 600 kpc
or less have associated Lya absorbers within 1000 km/s, and the majority of
these galaxies have absorbers within 350 km/s. We also find that the Lya
equivalent width is anticorrelated with the projected distance of the nearest
galaxy out to at least 600 kpc, but this should be interpreted cautiously
because there are potential selection biases. Statistical tests using the
entire sample also indicate that the absorbers are not randomly distributed. We
discuss the nature of the Lya absorbers in light of the new data.Comment: Accepted for publication in ApJ. 17 pages plus 11 tables and 17
figure
- …
