939,389 research outputs found

    A large scale height galactic component of the diffuse 2-60 keV background

    Get PDF
    The diffuse 2-60 keV X-ray background has a galactic component clearly detectable by its strong variation with both galactic latitude and longitude. This galactic component is typically 10 percent of the extragalactic background toward the galactic center, half that strong toward the anticenter, and extrapolated to a few percent of the extragalactic background toward the galactic poles. It is acceptably modeled by a finite radius emission disk with a scale height of several kiloparsecs. The averaged galactic spectrum is best fitted by a thermal spectrum of kT about 9 keV, a spectrum much softer than the about 40 keV spectrum of the extragalactic component. The most likely source of this emission is low luminosity stars with large scale heights such as subdwarfs. Inverse Compton emission from GeV electrons on the microwave background contributes only a fraction of the galactic component unless the local cosmic ray electron spectrum and intensity are atypical

    Matrix Hamiltonians: SUSY approach to hidden symmetries

    Get PDF
    A new supersymmetric approach to the analysis of dynamical symmetries for matrix quantum systems is presented. Contrary to standard one dimensional quantum mechanics where there is no role for an additional symmetry due to nondegeneracy, matrix hamiltonians allow for non-trivial residual symmetries. This approach is based on a generalization of the intertwining relations familiar in SUSY Quantum Mechanics. The corresponding matrix supercharges, of first or of second order in derivatives, lead to an algebra which incorporates an additional block diagonal differential matrix operator (referred to as a "hidden" symmetry operator) found to commute with the superhamiltonian. We discuss some physical interpretations of such dynamical systems in terms of spin 1/2 particle in a magnetic field or in terms of coupled channel problem. Particular attention is paid to the case of transparent matrix potentials.Comment: 20 pages, LaTe

    Excitons in insulating cuprates

    Full text link
    We study the electronic excitations near the charge-transfer gap in insulating CuO2_2 planes, starting from a six-band model which includes pπ% p_\pi and dxyd_{xy} orbitals and Cu-O nearest-neighbor repulsion UpdU_{pd}. While the low lying electronic excitations in the doped system are well described by a modified tJt-J model, the excitonic states of the insulator include hybrid dxyd_{xy}- pπp_\pi states of A2gA_{2g} symmetry. We also obtain excitons of symmetries B1gB_{1g} and EuE_u, and eventually A1gA_{1g}, which can be explained within a one-band model. The results agree with observed optical absorption and Raman excitations.Comment: 10 pages and 3 figures in postscript format, compressed with uufile

    A gradient index metamaterial

    Full text link
    Metamaterials--artificially structured materials with tailored electromagnetic response--can be designed to have properties difficult to achieve with existing materials. Here we present a structured metamaterial, based on conducting split ring resonators (SRRs), which has an effective index-of-refraction with a constant spatial gradient. We experimentally confirm the gradient by measuring the deflection of a microwave beam by a planar slab of the composite metamaterial over a broad range of frequencies. The gradient index metamaterial represents an alternative approach to the development of gradient index lenses and similar optics that may be advantageous, especially at higher frequencies. In particular, the gradient index material we propose may be suited for terahertz applications, where the magnetic resonant response of SRRs has recently been demonstrated

    Study of the transition from pairing vibrational to pairing rotational regimes between magic numbers N=50 and N=82, with two-nucleon transfer

    Full text link
    Absolute values of two-particle transfer cross sections along the Sn-isotopic chain from closed shell to closed shell (100Sn,132Sn) are calculated taking properly into account nuclear correlations, as well as the successive, simultaneous and non-orthogonality contributions to the differential cross sections. The results are compared with systematic, homogeneous bombarding conditions (p, t) data. The observed agreement, almost within statistical errors and without free parameters, testify to the fact that theory is able to be quantitative in its predictions

    Effects of magnetic fields on radiatively overstable shock waves

    Full text link
    We discuss high-resolution simulations of one-dimensional, plane-parallel shock waves with mean speeds between 150 and 240 km/s propagating into gas with Alfven velocities up to 40 km/s and outline the conditions under which these radiative shocks experience an oscillatory instability in the cooling length, shock velocity, and position of the shock front. We investigate two forms of postshock cooling: a truncated single power law and a more realistic piecewise power law. The degree of nonlinearity of the instability depends strongly on the cooling power law and the Alfven Mach number: for power-law indices \alpha < 0 typical magnetic field strengths may be insufficient either to stabilize the fundamental oscillatory mode or to prevent the oscillations from reaching nonlinear amplitudes.Comment: 11 text pages, LaTeX/AASTeX (aaspp4); 5 figures; accepted by Ap

    Information retrieval system

    Get PDF
    Generalized information storage and retrieval system capable of generating and maintaining a file, gathering statistics, sorting output, and generating final reports for output is reviewed. File generation and file maintenance programs written for the system are general purpose routines

    Extended Inflation with a Curvature-Coupled Inflaton

    Full text link
    We examine extended inflation models enhanced by the addition of a coupling between the inflaton field and the space-time curvature. We examine two types of model, where the underlying inflaton potential takes on second-order and first-order form respectively. One aim is to provide models which satisfy the solar system constraints on the Brans--Dicke parameter ω\omega. This constraint has proven very problematic in previous extended inflation models, and we find circumstances where it can be successfully evaded, though the constraint must be carefully assessed in our model and can be much stronger than the usual ω>500\omega > 500. In the simplest versions of the model, one may avoid the need to introduce a mass for the Brans--Dicke field in order to ensure that it takes on the correct value at the present epoch, as seems to be required in hyperextended inflation. We also briefly discuss aspects of the formation of topological defects in the inflaton field itself.Comment: 24 pages, LaTeX (no figures), to appear, Physical Review D, mishandling of the solar system constraint on extended gravity theories corrected, SUSSEX-AST 93/6-

    No Radio Afterglow from the Gamma-Ray Burst of February 28, 1997

    Get PDF
    We present radio observations of the gamma-ray burster GRB 970228 made with the Very Large Array (VLA) and the Owens Valley Radio Observatory (OVRO) spanning a range of postburst timescales from one to 300 days. A search for a time-variable radio source was conducted covering an area which included a fading X-ray source and an optical transient, both of which are thought to be the long wavelength counterparts to the gamma-ray burst. At the position of the optical transient sensitive limits between 10 uJy and 1 mJy can be placed on the absence of a radio counterpart to GRB 970228 between 1.4 and 240 GHz. We apply a simple formulation of a fireball model which has been used with some success to reproduce the behavior of the optical and X-ray light curves. Using this model we conclude that the radio non-detections are consistent with the peak flux density of the afterglow lying between 20-40 uJy and it requires that the optical flux peaked between 4 and 16 hours after the burst.Comment: ApJ Let (submitted

    Modular localization and Wigner particles

    Full text link
    We propose a framework for the free field construction of algebras of local observables which uses as an input the Bisognano-Wichmann relations and a representation of the Poincare' group on the one-particle Hilbert space. The abstract real Hilbert subspace version of the Tomita-Takesaki theory enables us to bypass some limitations of the Wigner formalism by introducing an intrinsic spacetime localization. Our approach works also for continuous spin representations to which we associate a net of von Neumann algebras on spacelike cones with the Reeh-Schlieder property. The positivity of the energy in the representation turns out to be equivalent to the isotony of the net, in the spirit of Borchers theorem. Our procedure extends to other spacetimes homogeneous under a group of geometric transformations as in the case of conformal symmetries and de Sitter spacetime.Comment: 22 pages, LaTeX. Some errors have been corrected. To appear on Rev. Math. Phy
    corecore