72 research outputs found
Mitochondrial Genome Sequences Effectively Reveal the Phylogeny of Hylobates Gibbons
BACKGROUND: Uniquely among hominoids, gibbons exist as multiple geographically contiguous taxa exhibiting distinctive behavioral, morphological, and karyotypic characteristics. However, our understanding of the evolutionary relationships of the various gibbons, especially among Hylobates species, is still limited because previous studies used limited taxon sampling or short mitochondrial DNA (mtDNA) sequences. Here we use mtDNA genome sequences to reconstruct gibbon phylogenetic relationships and reveal the pattern and timing of divergence events in gibbon evolutionary history. METHODOLOGY/PRINCIPAL FINDINGS: We sequenced the mitochondrial genomes of 51 individuals representing 11 species belonging to three genera (Hylobates, Nomascus and Symphalangus) using the high-throughput 454 sequencing system with the parallel tagged sequencing approach. Three phylogenetic analyses (maximum likelihood, Bayesian analysis and neighbor-joining) depicted the gibbon phylogenetic relationships congruently and with strong support values. Most notably, we recover a well-supported phylogeny of the Hylobates gibbons. The estimation of divergence times using Bayesian analysis with relaxed clock model suggests a much more rapid speciation process in Hylobates than in Nomascus. CONCLUSIONS/SIGNIFICANCE: Use of more than 15 kb sequences of the mitochondrial genome provided more informative and robust data than previous studies of short mitochondrial segments (e.g., control region or cytochrome b) as shown by the reliable reconstruction of divergence patterns among Hylobates gibbons. Moreover, molecular dating of the mitogenomic divergence times implied that biogeographic change during the last five million years may be a factor promoting the speciation of Sundaland animals, including Hylobates species
Review of Coronal Oscillations - An Observer's View
Recent observations show a variety of oscillation modes in the corona. Early
non-imaging observations in radio wavelengths showed a number of fast-period
oscillations in the order of seconds, which have been interpreted as fast
sausage mode oscillations. TRACE observations from 1998 have for the first time
revealed the lateral displacements of fast kink mode oscillations, with periods
of ~3-5 minutes, apparently triggered by nearby flares and destabilizing
filaments. Recently, SUMER discovered with Doppler shift measurements loop
oscillations with longer periods (10-30 minutes) and relatively short damping
times in hot (7 MK) loops, which seem to correspond to longitudinal slow
magnetoacoustic waves. In addition, propagating longitudinal waves have also
been detected with EIT and TRACE in the lowest density scale height of loops
near sunspots. All these new observations seem to confirm the theoretically
predicted oscillation modes and can now be used as a powerful tool for
``coronal seismology'' diagnostic.Comment: 5 Figure
Odintifier - A computational method for identifying insertions of organellar origin from modern and ancient high-throughput sequencing data based on haplotype phasing
The barnard metamorphics and their relation to the Barron river metamorphics and the Hodgkinson formation, North Queensland
- …
