1,421 research outputs found

    B Meson Transitions into Higher Mass Charmed Resonances

    Get PDF
    We use QCD sum rules to estimate the universal form factors describing the semileptonic B decays into excited charmed resonances, such as the 11^- and 22^- states D1D_1^{*} and D2D_2^{*} belonging to the sP=3/2s_\ell^P={3/2}^- heavy quark doublet, and the 22^- and 33^- states D2D_2^{*\prime} and D3D_3 belonging to the s_\ell^P={5\2}^- doublet.Comment: LaTex, 14 pages, 1 figur

    Functional traits of trees on and off termite mounds:Understanding the origin of biotically-driven heterogeneity in savannas

    Get PDF
    Questions In African savannas, Macrotermes termites contribute to small-scale heterogeneity by constructing large mounds. Operating as islands of high nutrient and water availability and low fire frequency, these mounds support distinct, diverse communities of trees that have been shown to be highly attractive to browsers. However, the distinct traits of tree species on termite mounds have hardly been studied, even though this may help to understand processes determining (1) their characteristic community structure and (2) attractiveness for browsers. Here, we compare functional trait and browser preference values between tree species on and off termite mounds. Location Hluhluwe-iMfolozi Park, Kwazulu-Natal, South Africa. Methods We recorded tree community compositions for 16 large Macrotermes natalensis mounds and 16 control plots of 100 m2 each in a paired design. For each observed tree species we measured 22 traits, related to water and nutrient use, fire tolerance, light competition and anti-herbivore defence, and compared average trait values between mound and control communities. Furthermore, we investigated the feeding preferences of ungulate browsers for the most common tree species and how this was linked to their associated traits. Results Termite mounds supported tree communities that were distinct from the surrounding savanna vegetation. Mounds hosted more evergreen and less leguminous tree species than control communities, and the dominant species were less mechanically defended, less nutritious, had larger leaves and lower wood density than the species dominating control plots. Browsers preferred leguminous tree species with high leaf N and P content, which were relatively rare on termite mounds. Conclusions Overall, we conclude that termite mounds in this savanna form small refuges for tree species that seem less adapted to fire (more evergreens), have low nutrient availability (less nitrogen fixers) and suffer from water stress (larger leaf sizes) than typical savanna trees. Surprisingly, despite their reputation as browsing hotspots, the tree species dominating mounds are less nutritious and less preferred by browsers than tree species of the surrounding savanna, which may be explained by the relatively nutrient-rich nature of this savanna or intraspecific trait differences

    Processor Allocation for Optimistic Parallelization of Irregular Programs

    Full text link
    Optimistic parallelization is a promising approach for the parallelization of irregular algorithms: potentially interfering tasks are launched dynamically, and the runtime system detects conflicts between concurrent activities, aborting and rolling back conflicting tasks. However, parallelism in irregular algorithms is very complex. In a regular algorithm like dense matrix multiplication, the amount of parallelism can usually be expressed as a function of the problem size, so it is reasonably straightforward to determine how many processors should be allocated to execute a regular algorithm of a certain size (this is called the processor allocation problem). In contrast, parallelism in irregular algorithms can be a function of input parameters, and the amount of parallelism can vary dramatically during the execution of the irregular algorithm. Therefore, the processor allocation problem for irregular algorithms is very difficult. In this paper, we describe the first systematic strategy for addressing this problem. Our approach is based on a construct called the conflict graph, which (i) provides insight into the amount of parallelism that can be extracted from an irregular algorithm, and (ii) can be used to address the processor allocation problem for irregular algorithms. We show that this problem is related to a generalization of the unfriendly seating problem and, by extending Tur\'an's theorem, we obtain a worst-case class of problems for optimistic parallelization, which we use to derive a lower bound on the exploitable parallelism. Finally, using some theoretically derived properties and some experimental facts, we design a quick and stable control strategy for solving the processor allocation problem heuristically.Comment: 12 pages, 3 figures, extended version of SPAA 2011 brief announcemen

    B and B_S decay constants from moments of Finite Energy Sum Rules in QCD

    Get PDF
    We use an appropriate combination of moments of finite energy sum rules in QCD in order to compute the B_q-meson decays constants f_B and f_{B_s}.We perform the calculation using a two-loop computation of the imaginary part of the pseudoscalar two point function in terms of the running bottom quark mass. The results are stable with the so called QCD duality threshold and they are in agreement with the estimates obtained from Borel transform QCD sum rules and lattice computations.Comment: 11 pages, 2 figure

    Phenomenology of V_ub from Ratios of Inclusive B Decay Rates

    Full text link
    We explore the theoretical feasibility of extracting V_ub from two ratios built from B meson inclusive partial decays, R_1 = Gamma(b-> u cbar s)/3Gamma(b -> c l nu), and R_2 = [Gamma(b -> c X) - Gamma(b -> cbar X)]/Gamma(b -> c ubar d). We discuss contributions to these quantities from perturbative and nonperturbative physics, and show that they can be computed with overall uncertainties at the level of 10%.Comment: 19 pages, 8 embedded EPS figures, uses REVTe

    The Goldberger-Treiman Discrepancy

    Get PDF
    The Golberger- Treiman discrepancy is related to the asymptotic behaviour of the pionic form factor of the nucleon obtained from baryonic QCD sum rules. The result is .015<=Delta_{GT}<=.022Comment: References updated and minor correction

    Model-Independent Semileptonic Form Factors Using Dispersion Relations

    Full text link
    We present a method for parametrizing heavy meson semileptonic form factors using dispersion relations, and from it produce a two-parameter description of the B -> B elastic form factor. We use heavy quark symmetry to relate this function to B -> D* l nu form factors, and extract |V_cb|=0.0355^{+0.0029}_{-0.0025} from experimental data with a least squares fit. Our method eliminates model-dependent uncertainties inherent in choosing a parametrization for the extrapolation of the differential decay rate to threshold.Comment: uses lanlmac(harvmac) and epsf, 12 pages, 1 eps figure included (Talk by BG at the 6-th International Symposium on Heavy Flavour Physics, Pisa, Italy, 6--10 June, 1995

    Estimates with an Effective Chiral Lagrangian for Heavy Mesons

    Full text link
    On the basis of an effective lagrangian incorporating approximate chiral symmetry and heavy-quark spin and flavor symmetries, and by use of information on leptonic decays, we estimate the effective DDπD^\star D\pi coupling.Comment: UGVA-DPT 1992/07-779, BARI-TH/92-117 Revised version, September 1992, LaTeX (style article), 7 page

    Light-induced reversible modification of the work function of a new perfluorinated biphenyl azobenzene chemisorbed on Au (111)

    Get PDF
    This work was financially supported by EC through the Marie-Curie ITN SUPERIOR (PITN-GA-2009-238177) and IEF MULTITUDES (PIEF-GA-2012-326666), the ERC project SUPRAFUNCTION (GA-257305), the Agence Nationale de la Recherche through the LabEx project Chemistry of Complex Systems (ANR-10-LABX-0026_CSC), and the International Center for Frontier Research in Chemistry (icFRC). The work in Mons is further supported by the Interuniversity Attraction Poles Programme (P7/05) initiated by the Belgian Science Policy Office, and by the Belgian National Fund for Scientific Research (FNRS). J.C. is an FNRS research director. The synthesis team in Switzerland acknowledges financial support by the Swiss National Science Foundation (SNF) and the Swiss Nanoscience Institute (SNI)

    S_3 and the L=1 Baryons in the Quark Model and the Chiral Quark Model

    Get PDF
    The S_3 symmetry corresponding to permuting the positions of the quarks within a baryon allows us to study the 70-plet of L=1 baryons without an explicit choice for the spatial part of the quark wave functions: given a set of operators with definite transformation properties under the spin-flavor group SU(3) x SU(2) and under this S_3, the masses of the baryons can be expressed in terms of a small number of unknown parameters which are fit to the observed L=1 baryon mass spectrum. This approach is applied to study both the quark model and chiral constituent quark model. The latter theory leads to a set of mass perturbations which more satisfactorily fits the observed L=1 baryon mass spectrum (though we can say nothing, within our approach, about the physical reasonableness of the parameters in the fit). Predictions for the mixing angles and the unobserved baryon masses are given for both models as well as a discussion of specific baryons.Comment: 24 pages, requires picte
    corecore