1,015 research outputs found
Directed Fixed Energy Sandpile Model
We numerically study the directed version of the fixed energy sandpile. On a
closed square lattice, the dynamical evolution of a fixed density of sand
grains is studied. The activity of the system shows a continuous phase
transition around a critical density. While the deterministic version has the
set of nontrivial exponents, the stochastic model is characterized by mean
field like exponents.Comment: 5 pages, 6 figures, to be published in Phys. Rev.
In-Vivo Messung der Blutflussgeschwindigkeitsverteilung distal zu künstlichen Aortenklappen mittels der Magnetresonanz-Phasenkontrast-Technik
A transition from river networks to scale-free networks
A spatial network is constructed on a two dimensional space where the nodes
are geometrical points located at randomly distributed positions which are
labeled sequentially in increasing order of one of their co-ordinates. Starting
with such points the network is grown by including them one by one
according to the serial number into the growing network. The -th point is
attached to the -th node of the network using the probability: where is the degree of the -th node
and is the Euclidean distance between the points and . Here
is a continuously tunable parameter and while for one gets
the simple Barab\'asi-Albert network, the case for
corresponds to the spatially continuous version of the well known Scheidegger's
river network problem. The modulating parameter is tuned to study the
transition between the two different critical behaviors at a specific value
which we numerically estimate to be -2.Comment: 5 pages, 5 figur
Oxidation and emission of methane in a monomictic lake (Rotsee, Switzerland)
The build-up of methane in the hypolimnion of the eutrophic Lake Rotsee (Lucerne, Switzerland) was monitored over a full year. Sources and sinks of methane in the water column were characterized by measuring concentrations and carbon isotopic composition. In fall, high methane concentrations (up to 1mM) were measured in the anoxic water layer. In the oxic layer, methane concentrations were much lower and the isotopic composition shifted towards heavy carbon isotopes. Methane oxidation rates peaked at the interface between oxic and anoxic water layers at around 8-10m depth. The electron balance between the oxidants oxygen, sulphate, and nitrate, and the reductants methane, sulphide and ammonium, matched very well in the chemocline during the stratified season. The profile of carbon isotopic composition of methane showed strong indications for methane oxidation at the chemocline (including the oxycline). Aerobic methane oxidizing bacteria were detected at the interface using fluorescence in situ hybridization. Sequencing the responsible organisms from DGGE bands revealed that aerobic methanotrophs type I closely related to Methylomonas were present. Sulphate consumption occurred at the sediment surface and, only towards the end of the stagnation period, matched with a zone of methane consumption. In any case, the flux of sulphate below the chemocline was not sufficient to oxidize all the methane and other oxidants like nitrate, iron or manganese are necessary for the observed methane oxidation. Although most of the methane was oxidized either aerobically or anaerobically, Lake Rotsee was still a source of methane to the atmosphere with emission rates between 0.2mgCH4m−2day−1 in February and 7mgCH4m−2day−1 in Novembe
On D0-branes in Gepner models
We show why and when D0-branes at the Gepner point of Calabi-Yau manifolds
given as Fermat hypersurfaces exist.Comment: 22 pages, substantial improvements in sections 2 and 3, references
added, version to be publishe
On the nature of faint Low Surface Brightness galaxies in the Coma cluster
This project is the continuation of our study of faint Low Surface Brightness
Galaxies (fLSBs) in one of the densest nearby galaxy regions known, the Coma
cluster. Our goal is to improve our understanding of the nature of these
objects by comparing the broad band spectral energy distribution with
population synthesis models. The data were obtained with the MEGACAM and CFH12K
cameras at the CFHT. We used the resulting photometry in 5 broad band filters
(u*, B, V, R, and I), that included new u*-band data, to fit spectral models.
With these spectral fits we inferred a cluster membership criterium, as well as
the ages, dust extinctions, and photometric types of these fLSBs. We show that
about half of the Coma cluster fLSBs have a spectral energy distribution well
represented in our template library while the other half present a flux deficit
at ultraviolet wavelengths. Among the well represented, ~80% are probably part
of the Coma cluster based on their spectral energy distribution. They are
relatively young (younger than 2.3 Gyrs for 90% of the sample) non-starburst
objects. The later their type, the younger fLSBs are. A significant part of the
fLSBs are quite dusty objects. fLSBs are low stellar mass objects (the later
their type the less massive they are), with stellar masses comparable to
globular clusters for the faintest ones. Their characteristics are correlated
with infall directions, confirming the disruptive origin for part of them.Comment: Accepted for publication in A&A, 10 pages, 10 figure
Continuum Model for River Networks
The effects of erosion, avalanching and random precipitation are captured in
a simple stochastic partial differential equation for modelling the evolution
of river networks. Our model leads to a self-organized structured landscape and
to abstraction and piracy of the smaller tributaries as the evolution proceeds.
An algebraic distribution of the average basin areas and a power law
relationship between the drainage basin area and the river length are found.Comment: 9 pages, Revtex 3.0, 7 figures in compressed format using uufiles
command, to appear in Phys. Rev. Lett., for an hard copy or problems e-mail
to [email protected]
Unified View of Scaling Laws for River Networks
Scaling laws that describe the structure of river networks are shown to
follow from three simple assumptions. These assumptions are: (1) river networks
are structurally self-similar, (2) single channels are self-affine, and (3)
overland flow into channels occurs over a characteristic distance (drainage
density is uniform). We obtain a complete set of scaling relations connecting
the exponents of these scaling laws and find that only two of these exponents
are independent. We further demonstrate that the two predominant descriptions
of network structure (Tokunaga's law and Horton's laws) are equivalent in the
case of landscapes with uniform drainage density. The results are tested with
data from both real landscapes and a special class of random networks.Comment: 14 pages, 9 figures, 4 tables (converted to Revtex4, PRE ref added
Macroscopic Equations of Motion for Two Phase Flow in Porous Media
The established macroscopic equations of motion for two phase immiscible
displacement in porous media are known to be physically incomplete because they
do not contain the surface tension and surface areas governing capillary
phenomena. Therefore a more general system of macroscopic equations is derived
here which incorporates the spatiotemporal variation of interfacial energies.
These equations are based on the theory of mixtures in macroscopic continuum
mechanics. They include wetting phenomena through surface tensions instead of
the traditional use of capillary pressure functions. Relative permeabilities
can be identified in this approach which exhibit a complex dependence on the
state variables. A capillary pressure function can be identified in equilibrium
which shows the qualitative saturation dependence known from experiment. In
addition the new equations allow to describe the spatiotemporal changes of
residual saturations during immiscible displacement.Comment: 15 pages, Phys. Rev. E (1998), in prin
- …
