6,074 research outputs found

    Analysis of dynamic stall using unsteady boundary-layer theory

    Get PDF
    The unsteady turbulent boundary layer and potential flow about a pitching airfoil are analyzed using numerical methods to determine the effect of pitch rate on the delay in forward movement of the rear flow reversal point. An explicit finite difference scheme is used to integrate the unsteady boundary layer equations, which are coupled at each instant of time to a fully unsteady and nonlinear potential flow analysis. A substantial delay in forward movement of the reversal point is demonstrated with increasing pitch rate, and it is shown that the delay results partly from the alleviation of the gradients in the potential flow, and partly from the effects of unsteadiness in the boundary layer itself. The predicted delay in flow-reversal onset, and its variation with pitch rate, are shown to be in reasonable agreement with experimental data relating to the delay in dynamic stall. From the comparisons it can be concluded (a) that the effects of time-dependence are sufficient to explain the failure of the boundary layer to separate during the dynamic overshoot, and (b) that there may be some link between forward movement of the reversal point and dynamic stall

    A statistical model for the intrinsically broad superconducting to normal transition in quasi-two-dimensional crystalline organic metals

    Full text link
    Although quasi-two-dimensional organic superconductors such as κ\kappa-(BEDT-TTF)2_2Cu(NCS)2_2 seem to be very clean systems, with apparent quasiparticle mean-free paths of several thousand \AA, the superconducting transition is intrinsically broad (e.g 1\sim 1 K wide for Tc10T_c \approx 10 K). We propose that this is due to the extreme anisotropy of these materials, which greatly exacerbates the statistical effects of spatial variations in the potential experienced by the quasiparticles. Using a statistical model, we are able to account for the experimental observations. A parameter xˉ\bar{x}, which characterises the spatial potential variations, may be derived from Shubnikov-de Haas oscillation experiments. Using this value, we are able to predict a transition width which is in good agreement with that observed in MHz penetration-depth measurements on the same sample.Comment: 8 pages, 2 figures, submitted to J. Phys. Condens. Matte

    Electromagnetic field angular momentum in condensed matter systems

    Full text link
    Various electromagnetic systems can carry an angular momentum in their {\bf E} and {\bf B} fields. The electromagnetic field angular momentum (EMAM) of these systems can combine with the spin angular momentum to give composite fermions or composite bosons. In this paper we examine the possiblity that an EMAM could provide an explanation of the fractional quantum Hall effect (FQHE) which is complimentary to the Chern-Simons explanation. We also examine a toy model of a non-BCS superconductor (e.g. high TcT_c superconductors) in terms of an EMAM. The models presented give a common, simple picture of these two systems in terms of an EMAM. The presence of an EMAM in these systems might be tested through the observation of the decay modes of a charged, spin zero unstable particle inside one of these systems.Comment: 17 pages, no figures, to be published in Phys. Rev.

    Prevalence of Common Mental Disorders in a Rural District of Kenya, and Socio-Demographic Risk Factors

    Get PDF
    Association between common mental disorders (CMDs), equity, poverty and socio-economic functioning are relatively well explored in high income countries, but there have been fewer studies in low and middle income countries, despite the considerable burden posed by mental disorders, especially in Africa, and their potential impact on development. This paper reports a population-based epidemiological survey of a rural area in Kenya. A random sample of 2% of all adults living in private households in Maseno, Kisumu District of Nyanza Province, Kenya (50,000 population), were studied. The Clinical Interview Schedule-Revised (CIS-R) was used to determine the prevalence of common mental disorders (CMDs). Associations with socio-demographic and economic characteristics were explored. A CMD prevalence of 10.8% was found, with no gender difference. Higher rates of illness were found in those who were of older age and those in poor physical health. We conclude that CMDs are common in Kenya and rates are elevated among people who are older, and those in poor health

    Quantum Oscillations in the Underdoped Cuprate YBa2Cu4O8

    Full text link
    We report the observation of quantum oscillations in the underdoped cuprate superconductor YBa2Cu4O8 using a tunnel-diode oscillator technique in pulsed magnetic fields up to 85T. There is a clear signal, periodic in inverse field, with frequency 660+/-15T and possible evidence for the presence of two components of slightly different frequency. The quasiparticle mass is m*=3.0+/-0.3m_e. In conjunction with the results of Doiron-Leyraud et al. for YBa2Cu3O6.5, the present measurements suggest that Fermi surface pockets are a general feature of underdoped copper oxide planes and provide information about the doping dependence of the Fermi surface.Comment: Contains revisions addressing referees' comments including a different Fig 1b. 4 pages, 4 figure

    The magnetoresistance and Hall effect in CeFeAsO: a high magnetic field study

    Full text link
    The longitudinal electrical resistivity and the transverse Hall resistivity of CeFeAsO are simultaneously measured up to a magnetic field of 45T using the facilities of pulsed magnetic field at Los Alamos. Distinct behaviour is observed in both the magnetoresistance Rxx({\mu}0H) and the Hall resistance Rxy({\mu}0H) while crossing the structural phase transition at Ts \approx 150K. At temperatures above Ts, little magnetoresistance is observed and the Hall resistivity follows linear field dependence. Upon cooling down the system below Ts, large magnetoresistance develops and the Hall resistivity deviates from the linear field dependence. Furthermore, we found that the transition at Ts is extremely robust against the external magnetic field. We argue that the magnetic state in CeFeAsO is unlikely a conventional type of spin-density-wave (SDW).Comment: 4 pages, 3 figures SCES2010, To appear in J. Phys.: Conf. Ser. for SCES201

    Vibratory Loads Data from a Wind-Tunnel Test of Structurally Tailored Model Helicopter Rotors

    Get PDF
    An experimental study was conducted in the Langley Transonic Dynamics Tunnel to investigate the use of a Bell Helicopter Textron (BHT) rotor structural tailoring concept, known as rotor nodalization, in conjunction with advanced blade aerodynamics as well as to evaluate rotor blade aerodynamic design methodologies. A 1/5-size, four-bladed bearingless hub, three sets of Mach-scaled model rotor blades were tested in forward flight from transition up to an advance ratio of 0.35. The data presented pertain only to the evaluation of the structural tailoring concept and consist of fixed-system and rotating system vibratory loads. These data will be useful for evaluating the effects of tailoring blade structural properties on fixed-system vibratory loads, as well as validating analyses used in the design of advanced rotor systems

    Complex Lagrangians and phantom cosmology

    Get PDF
    Motivated by the generalization of quantum theory for the case of non-Hermitian Hamiltonians with PT symmetry, we show how a classical cosmological model describes a smooth transition from ordinary dark energy to the phantom one. The model is based on a classical complex Lagrangian of a scalar field. Specific symmetry properties analogous to PT in non-Hermitian quantum mechanics lead to purely real equation of motion.Comment: 11 pages, to be published in J.Phys.A, refs. adde

    Reaction Time of a Group of Physics Students

    Full text link
    The reaction time of a group of students majoring in Physics is reported here. Strong co-relation between fatigue, reaction time and performance have been seen and may be useful for academicians and administrators responsible of working out time-tables, course structures, students counsellings etc.Comment: 10 pages, 4 figure

    Disordered Fulde-Ferrel-Larkin-Ovchinnikov State in d-wave Superconductors

    Full text link
    We study the Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) superconducting state in the disordered systems. We analyze the microscopic model, in which the d-wave superconductivity is stabilized near the antiferromagnetic quantum critical point, and investigate two kinds of disorder, namely, box disorder and point disorder, on the basis of the Bogoliubov-deGennes (BdG) equation. The spatial structure of modulated superconducting order parameter and the magnetic properties in the disordered FFLO state are investigated. We point out the possibility of "FFLO glass" state in the presence of strong point disorders, which arises from the configurational degree of freedom of FFLO nodal plane. The distribution function of local spin susceptibility is calculated and its relation to the FFLO nodal plane is clarified. We discuss the NMR measurements for CeCoIn_5.Comment: Submitted to New. J. Phys. a focus issue on "Superconductors with Exotic Symmetries
    corecore