2,029 research outputs found
Radio and X-ray Observations of the Type Ic SN 2007gr Reveal an Ordinary, Non-relativistic Explosion
We present extensive radio and X-ray observations of the nearby Type Ic SN
2007gr in NGC 1058 obtained with the Very Large Array and the Chandra X-ray
Observatory and spanning 5 to 150 days after explosion. Through our detailed
modeling of these data, we estimate the properties of the blastwave and the
circumstellar environment. We find evidence for a freely-expanding and
non-relativistic explosion with an average blastwave velocity, v~0.2c, and a
total internal energy for the radio emitting material of E ~ 2 x 10^46 erg
assuming equipartition of energy between electrons and magnetic fields
(epsilon_e=epsilon_B=0.1). The temporal and spectral evolution of the radio
emission points to a stellar wind-blown environment shaped by a steady
progenitor mass loss rate of Mdot ~ 6 x 10^-7 solar masses per year (wind
velocity, v_w=10^3 km/s). These parameters are fully consistent with those
inferred for other SNe Ibc and are in line with the expectations for an
ordinary, homologous SN explosion. Our results are at odds with those of Paragi
et al. (2010) who recently reported evidence for a relativistic blastwave in SN
2007gr based on their claim that the radio emission was resolved away in a low
signal-to-noise Very Long Baseline Interferometry (VLBI) observation. Here we
show that the exotic physical scenarios required to explain the claimed
relativistic velocity -- extreme departures from equipartition and/or a highly
collimated outflow -- are excluded by our detailed Very Large Array radio
observations. Moreover, we present an independent analysis of the VLBI data and
propose that a modest loss of phase coherence provides a more natural
explanation for the apparent flux density loss which is evident on both short
and long baselines. We conclude that SN 2007gr is an ordinary Type Ibc
supernova.Comment: 14 pages, 6 figures, submitted to Ap
SN 2007bg: The Complex Circumstellar Environment Around One of the Most Radio-Luminous Broad-Lined Type Ic Supernovae
In this paper we present the results of the radio light curve and X-ray
observations of broad-lined Type Ic SN 2007bg. The light curve shows three
distinct phases of spectral and temporal evolution, implying that the SNe shock
likely encountered at least 3 different circumstellar medium regimes. We
interpret this as the progenitor of SN 2007bg having at least two distinct
mass-loss episodes (i.e., phases 1 and 3) during its final stages of evolution,
yielding a highly-stratified circumstellar medium. Modelling the phase 1 light
curve as a freely-expanding, synchrotron-emitting shell, self-absorbed by its
own radiating electrons, requires a progenitor mass-loss rate of
\dot{M}~1.9x10^{-6}(v_{w}/1000 km s^{-1}) Solar masses per year for the last
t~20(v_{w}/1000 km s^{-1}) yr before explosion, and a total energy of the radio
emitting ejecta of E\sim1x10^{48} erg after 10 days from explosion. This places
SN 2007bg among the most energetic Type Ib/c events. We interpret the second
phase as a sparser "gap" region between the two winds stages. Phase 3 shows a
second absorption turn-on before rising to a peak luminosity 2.6 times higher
than in phase 1. Assuming this luminosity jump is due to a circumstellar medium
density enhancement from a faster previous mass-loss episode, we estimate that
the phase 3 mass-loss rate could be as high as \dot{M}<~4.3x10^{-4}(v_{w}/1000
km s^{-1}) Solar masses per year. The phase 3 wind would have transitioned
directly into the phase 1 wind for a wind speed difference of ~2. In summary,
the radio light curve provides robust evidence for dramatic global changes in
at least some Ic-BL progenitors just prior (~10-1000 yr) to explosion. The
observed luminosity of this SN is the highest observed for a
non-gamma-ray-burst broad-lined Type Ic SN, reaching L_{8.46 GHz}~1x10^{29} erg
Hz^{-1} s^{-1}, ~567 days after explosion.Comment: 11 pages, 5 figures, accepted for publication in MNRA
An Off-Axis Relativistic Jet Model for the Type Ic supernova SN 2007gr
We propose an off-axis relativistic jet model for the Type Ic supernova SN
2007gr. Most of the energy ( erg) in the explosion is
contained in non-relativistic ejecta which produces the supernova. The optical
emission is coming from the decay process of synthesized in the
bulk SN ejecta. Only very little energy ( erg) is contained in the
relativistic jet with initial velocity about 0.94 times the speed of light. The
radio and X-ray emission comes from this relativistic jet. With some typical
parameters of a Wolf-Rayet star (progenitor of Type Ic SN), i.e., the mass loss
rate and the wind velocity
together with an observing angle of
, we can obtain the multiband light curves
that fit the observations well. All the observed data are consistent with our
model. Thus we conclude that SN 2007gr contains a weak relativistic jet and we
are observing the jet from off-axis.Comment: 22 pages, 4 figures, accepted for publication in Ap
VLBI Observations of SN 2008D
We report on two epochs of very-long-baseline interferometry (VLBI)
observations of the Type Ib/c supernova SN 2008D, which was associated with the
X-ray outburst XRF 080109. At our first epoch, at t = 30 days after the
explosion, we observed at 22 and 8.4 GHz, and at our second, at t = 133 days,
at 8.4 and 5.0 GHz. The VLBI observations allow us to accurately measure the
source's size and position at each epoch, and thus constrain its expansion
velocity and proper motion. We find the source at best marginally resolved at
both epochs, allowing us to place a 3sigma upper limit of ~0.75c on the
expansion velocity of a circular source. For an elongated source, our
measurements are compatible with mildly relativistic expansion. However, our
3sigma upper limit on the proper motion is 4 micro-arcsec/day, corresponding to
an apparent velocity of <0.6c, and is consistent with a stationary flux
centroid. This limit rules out a relativistic jet such as an gamma-ray burst
jet away from the line of sight, which would be expected to show apparent
proper motion of >c. Taken together, our measurements argue against the
presence of any long-lived relativistic outflow in SN 2008D. On the other hand,
our measurements are consistent with the nonrelativistic expansion velocities
of <30,000 km/s and small proper motions (<500 km/s) seen in typical
supernovae.Comment: Accepted for publication in the Astrophysical Journal Letter
Radio Monitoring of the Tidal Disruption Event Swift J164449.3+573451. I. Jet Energetics and the Pristine Parsec-Scale Environment of a Supermassive Black Hole
We present continued radio observations of the tidal disruption event
SwiftJ164449.3+573451 extending to \sim216 days after discovery. The data are
part of a long-term program to monitor the expansion and energy scale of the
relativistic outflow, and to trace the parsec-scale environment around a
previously-dormant supermassive black hole (SMBH). The new observations reveal
a significant change in the radio evolution starting at \sim1 month, with a
brightening at all frequencies that requires an increase in the energy by about
an order of magnitude, and an overall density profile around the SMBH of rho
\propto r^{-3/2} (0.1-1.2 pc) with a significant flattening at r\sim0.4-0.6 pc.
The increase in energy cannot be explained with continuous injection from an L
\propto t^{-5/3} tail, which is observed in the X-rays. Instead, we conclude
that the relativistic jet was launched with a wide range of Lorentz factors,
obeying E(>Gamma) \propto Gamma^{-2.5}. The similar ratio of duration to
dynamical timescale for Sw1644+57 and GRBs suggests that this result may be
applicable to GRBs as well. The radial density profile may be indicative of
Bondi accretion, with the inferred flattening at r\sim0.5 pc in good agreement
with the Bondi radius for a \sim10^6 M_sun black hole. The density at \sim0.5
pc is about a factor of 30 times lower than inferred for the Milky Way galactic
center, potentially due to a smaller number of mass-shedding massive stars.
From our latest observations (\sim216 d) we find that the jet energy is
E_{iso}\sim5x10^{53} erg (E_j\sim2.4x10^{51} erg for theta_j=0.1), the radius
is r\sim1.2 pc, the Lorentz factor is Gamma\sim2.2, the ambient density is
n\sim0.2 cm^{-3}, and the projected size is r_{proj}\sim25 microarcsec.
Assuming no future changes in the observed evolution we predict that the radio
emission from Sw1644+57 should be detectable with the EVLA for several decades,
and will be resolvable with VLBI in a few years.Comment: Submitted to ApJ; 22 pages, 2 tables, 9 figure
- …
