3,302 research outputs found
"Almost-stable" matchings in the Hospitals / Residents problem with Couples
The Hospitals / Residents problem with Couples (hrc) models the allocation of intending junior doctors to hospitals where couples are allowed to submit joint preference lists over pairs of (typically geographically close) hospitals. It is known that a stable matching need not exist, so we consider min bp hrc, the problem of finding a matching that admits the minimum number of blocking pairs (i.e., is “as stable as possible”). We show that this problem is NP-hard and difficult to approximate even in the highly restricted case that each couple finds only one hospital pair acceptable. However if we further assume that the preference list of each single resident and hospital is of length at most 2, we give a polynomial-time algorithm for this case. We then present the first Integer Programming (IP) and Constraint Programming (CP) models for min bp hrc. Finally, we discuss an empirical evaluation of these models applied to randomly-generated instances of min bp hrc. We find that on average, the CP model is about 1.15 times faster than the IP model, and when presolving is applied to the CP model, it is on average 8.14 times faster. We further observe that the number of blocking pairs admitted by a solution is very small, i.e., usually at most 1, and never more than 2, for the (28,000) instances considered
Illuminating dark matter and primordial black holes with interstellar antiprotons
Interstellar antiproton fluxes can arise from dark matter annihilating or
decaying into quarks or gluons that subsequently fragment into antiprotons.
Evaporation of primordial black holes also can produce a significant antiproton
cosmic-ray flux. Since the background of secondary antiprotons from spallation
has an interstellar energy spectrum that peaks at \sim 2\gev and falls
rapidly for energies below this, low-energy measurements of cosmic antiprotons
are useful in the search for exotic antiproton sources. However, measurement of
the flux near the earth is challenged by significant uncertainties from the
effects of the solar wind. We suggest evading this problem and more effectively
probing dark-matter signals by placing an antiproton spectrometer aboard an
interstellar probe currently under discussion. We address the experimental
challenges of a light, low-power-consuming detector, and present an initial
design of such an instrument. This experimental effort could significantly
increase our ability to detect, and have confidence in, a signal of exotic,
nonstandard antiproton sources. Furthermore, solar modulation effects in the
heliosphere would be better quantified and understood by comparing results to
inverse modulated data derived from existing balloon and space-based detectors
near the earth.Comment: 18 pages, 3 figure
Probing the structure of the cold dark matter halo with ancient mica
Mica can store (for >1 Gy) etchable tracks caused by atoms recoiling from
WIMPs. Ancient mica is a directional detector despite the complex motions it
makes with respect to the WIMP "wind". We can exploit the properties of
directionality and long integration time to probe for structure in the dark
matter halo of our galaxy. We compute a sample of possible signals in mica for
a plausible model of halo structure.Comment: 7 pages, 2 figure
A Chandra Search for Coronal X Rays from the Cool White Dwarf GD 356
We report observations with the Chandra X-ray Observatory of the single,
cool, magnetic white dwarf GD 356. For consistent comparison with other X-ray
observations of single white dwarfs, we also re-analyzed archival ROSAT data
for GD 356 (GJ 1205), G 99-47 (GR 290 = V1201 Ori), GD 90, G 195-19 (EG250 = GJ
339.1), and WD 2316+123 and archival Chandra data for LHS 1038 (GJ 1004) and GD
358 (V777 Her). Our Chandra observation detected no X rays from GD 356, setting
the most restrictive upper limit to the X-ray luminosity from any cool white
dwarf -- L_{X} < 6.0 x 10^{25} ergs/s, at 99.7% confidence, for a 1-keV
thermal-bremsstrahlung spectrum. The corresponding limit to the electron
density is n_{0} < 4.4 x 10^{11} cm^{-3}. Our re-analysis of the archival data
confirmed the non-detections reported by the original investigators. We discuss
the implications of our and prior observations on models for coronal emission
from white dwarfs. For magnetic white dwarfs, we emphasize the more stringent
constraints imposed by cyclotron radiation. In addition, we describe (in an
appendix) a statistical methodology for detecting a source and for constraining
the strength of a source, which applies even when the number of source or
background events is small.Comment: 27 pages, 4 figures, submitted to the Astrophysical Journa
A New WIMP Population in the Solar System and New Signals for Dark-Matter Detectors
We describe in detail how perturbations due to the planets can cause a
sub-population of WIMPs captured by scattering in surface layers of the Sun to
evolve to have orbits which no longer intersect the Sun. We argue that such
WIMPs, if their orbit has a semi-major axis less than 1/2 of Jupiter's, can
persist in the solar system for cosmological timescales. This leads to a new,
previously unanticipated WIMP population intersecting the Earth's orbit. The
WIMP-nucleon cross sections required for this population to be significant are
precisely those in the range predicted for SUSY dark matter, lying near the
present limits obtained by direct underground dark matter searches using
cyrogenic detectors. Thus, if a WIMP signal is observed in the next generation
of detectors, a potentially measurable signal due to this new population must
exist. This signal, lying in the keV range for Germanium detectors, would be
complementary to that of galactic halo WIMPs. A comparison of event rates,
anisotropies, and annual modulations would not only yield additional
confirmation that any claimed signal is indeed WIMP-based, but would also allow
one to gain information on the nature of the underlying dark matter model.Comment: Revtex, 37 pages including 6 figures, accepted by Phys. Rev D.
(version to be published, including changes made in response to referees
reports
Molecular Aspects of Secretory Granule Exocytosis by Neurons and Endocrine Cells
Neuronal communication and endocrine signaling are fundamental for integrating
the function of tissues and cells in the body. Hormones released by endocrine
cells are transported to the target cells through the circulation. By contrast, transmitter
release from neurons occurs at specialized intercellular junctions, the synapses.
Nevertheless, the mechanisms by which signal molecules are synthesized,
stored, and eventually secreted by neurons and endocrine cells are very similar.
Neurons and endocrine cells have in common two different types of secretory
organelles, indicating the presence of two distinct secretory pathways. The synaptic
vesicles of neurons contain excitatory or inhibitory neurotransmitters, whereas the
secretory granules (also referred to as dense core vesicles, because of their electron
dense content) are filled with neuropeptides and amines. In endocrine cells, peptide
hormones and amines predominate in secretory granules. The function and content
of vesicles, which share antigens with synaptic vesicles, are unknown for most
endocrine cells. However, in B cells of the pancreatic islet, these vesicles contain
GABA, which may be involved in intrainsular signaling.'
Exocytosis of both synaptic vesicles and secretory granules is controlled by
cytoplasmic calcium. However, the precise mechanisms of the subsequent steps,
such as docking of vesicles and fusion of their membranes with the plasma membrane,
are still incompletely understood. This contribution summarizes recent observations
that elucidate components in neurons and endocrine cells involved in
exocytosis. Emphasis is put on the intracellular aspects of the release of secretory
granules that recently have been analyzed in detail
The secondary infall model of galactic halo formation and the spectrum of cold dark matter particles on Earth
The spectrum of cold dark matter particles on Earth is expected to have peaks
in velocity space associated with particles which are falling onto the Galaxy
for the first time and with particles which have fallen in and out of the
Galaxy only a small number of times in the past. We obtain estimates for the
velocity magnitudes and the local densities of the particles in these peaks. To
this end we use the secondary infall model of galactic halo formation which we
have generalized to take account of the angular momentum of the dark matter
particles. The new model is still spherically symmetric and it admits
self-similar solutions. In the absence of angular momentum, the model produces
flat rotation curves for a large range of values of a parameter
which is related to the spectrum of primordial density perturbations. We find
that the presence of angular momentum produces an effective core radius, i.e.
it makes the contribution of the halo to the rotation curve go to zero at zero
radius. The model provides a detailed description of the large scale properties
of galactic halos including their density profiles, their extent and total
mass. We obtain predictions for the kinetic energies of the particles in the
velocity peaks and estimates for their local densities as functions of the
amount of angular momentum, the age of the universe and .Comment: LaTeX, 39 pages including 18 figure
Using Galactic Cepheids to verify Gaia parallaxes
Context. The Gaia satellite will measure highly accurate absolute parallaxes
of hundreds of millions of stars by comparing the parallactic displacements in
the two fields of view of the optical instrument. The requirements on the
stability of the 'basic angle' between the two fields are correspondingly
strict, and possible variations (on the microarcsec level) are therefore
monitored by an on-board metrology system. Nevertheless, since even very small
periodic variations of the basic angle might cause a global offset of the
measured parallaxes, it is important to find independent verification methods.
Aims. We investigate the potential use of Galactic Cepheids as standard candles
for verifying the Gaia parallax zero point. Methods. We simulate the complete
population of Galactic Cepheids and their observations by Gaia. Using the
simulated data, simultaneous fits are made of the parameters of the
period-luminosity relation and a global parallax zero point. Results. The total
number of Galactic Cepheids is estimated at about 20 000, of which nearly half
could be observed by Gaia. In the most favourable circumstances, including
negligible intrinsic scatter and extinction errors, the determined parallax
zero point has an uncertainty of 0.2 microarcsec. With more realistic
assumptions the uncertainty is several times larger, and the result is very
sensitive to errors in the applied extinction corrections. Conclusions. The use
of Galactic Cepheids alone will not be sufficient to determine a possible
parallax zero-point error to the full potential systematic accuracy of Gaia.
The global verification of Gaia parallaxes will most likely depend on a
combination of many different methods, including this one.Comment: 7 pages, 6 figures. Accepted for publication in Astronomy and
Astrophysic
- …
