95 research outputs found
Detection of blast-related traumatic brain injury in U.S. military personnel
BACKGROUND: Blast-related traumatic brain injuries have been common in the Iraq and Afghanistan wars, but fundamental questions about the nature of these injuries remain unanswered. METHODS: We tested the hypothesis that blast-related traumatic brain injury causes traumatic axonal injury, using diffusion tensor imaging (DTI), an advanced form of magnetic resonance imaging that is sensitive to axonal injury. The subjects were 63 U.S. military personnel who had a clinical diagnosis of mild, uncomplicated traumatic brain injury. They were evacuated from the field to the Landstuhl Regional Medical Center in Landstuhl, Germany, where they underwent DTI scanning within 90 days after the injury. All the subjects had primary blast exposure plus another, blast-related mechanism of injury (e.g., being struck by a blunt object or injured in a fall or motor vehicle crash). Controls consisted of 21 military personnel who had blast exposure and other injuries but no clinical diagnosis of traumatic brain injury. RESULTS: Abnormalities revealed on DTI were consistent with traumatic axonal injury in many of the subjects with traumatic brain injury. None had detectible intracranial injury on computed tomography. As compared with DTI scans in controls, the scans in the subjects with traumatic brain injury showed marked abnormalities in the middle cerebellar peduncles (P<0.001), in cingulum bundles (P = 0.002), and in the right orbitofrontal white matter (P = 0.007). In 18 of the 63 subjects with traumatic brain injury, a significantly greater number of abnormalities were found on DTI than would be expected by chance (P<0.001). Follow-up DTI scans in 47 subjects with traumatic brain injury 6 to 12 months after enrollment showed persistent abnormalities that were consistent with evolving injuries. CONCLUSIONS: DTI findings in U.S. military personnel support the hypothesis that blast-related mild traumatic brain injury can involve axonal injury. However, the contribution of primary blast exposure as compared with that of other types of injury could not be determined directly, since none of the subjects with traumatic brain injury had isolated primary blast injury. Furthermore, many of these subjects did not have abnormalities on DTI. Thus, traumatic brain injury remains a clinical diagnosis. (Funded by the Congressionally Directed Medical Research Program and the National Institutes of Health; ClinicalTrials.gov number, NCT00785304.
Separation processes during binary monotectic alloy production
Observation of microgravity solidification processes indicates that outside of sedimentation, at least two other important effects can separate the phases: critical-point wetting and spreading; and thermal migration of second-phase droplets due to interfacial tension gradients. It is difficult to study these surface tension effects while in a unit gravity field. In order to investigate the processes occurring over a temperature range, i.e., between a consolute point and the monotectic temperature, it is necessary to use a low-gravity environment. The MSFC drop tube (and tower), the ballistic trajectory KC-135 airplane, and the Space Shuttle are ideal facilities to aid formation and testing of hypotheses. Much of the early work in this area focuses on transparent materials so that process dynamics may be studied by optical techniques such as photography for viewing macro-processes; holography for studying diffusional growth; spinodal decomposition and coalescence; ellipsometry for surface wetting and spreading effects; and interferometry and spectroscopy for small-scale spatial resolution of concentration profiles
Key Brain Region Identification in Obesity Prediction with Structural MRI and Probabilistic Uncertainty Aware Model
Objectives/Goals: Predictive performance alone may not determine a model’s clinical utility. Neurobiological changes in obesity alter brain structures, but traditional voxel-based morphometry is limited to group-level analysis. We propose a probabilistic model with uncertainty heatmaps to improve interpretability and personalized prediction. Methods/Study Population: The data for this study are sourced from the Human Connectome Project (HCP), with approval from the Washington University in St. Louis Institutional Review Board. We preprocessed raw T1-weighted structural MRI scans from 525 patients using an automated pipeline. The dataset is divided into training (357 cases), calibration (63 cases), and testing (105 cases). Our probabilistic model is a convolutional neural network (CNN) with dropout regularization. It generates a prediction set containing high-probability correct predictions using conformal prediction techniques, which add an uncertainty layer to the CNN. Additionally, gradient-based localization mapping is employed to identify brain regions associated with low uncertainty cases. Results/Anticipated Results: The performance of the computational conformal model is evaluated using training and testing data with varying dropout rates from 0.1 to 0.5. The best results are achieved with a dropout rate of 0.5, yielding a fivefold cross-validated average precision of 72.19% and an F1-score of 70.66%. Additionally, the model provides probabilistic uncertainty quantification along with gradient-based localization maps that identify key brain regions, including the temporal lobe, putamen, caudate, and occipital lobe, relevant to obesity prediction. Comparisons with standard segmented brain atlases and existing literature highlight that our model’s uncertainty quantification mapping offers complementary evidence linking obesity to structural brain regions. Discussion/Significance of Impact: This research offers two significant advancements. First, it introduces a probabilistic model for predicting obesity from structural magnetic resonance imaging data, focusing on uncertainty quantification for reliable results. Second, it improves interpretability using localization maps to identify key brain regions linked to obesity
Preservice laboratory education strengthening enhances sustainable laboratory workforce in Ethiopia
Role of the Drosophila Non-Visual ß-Arrestin Kurtz in Hedgehog Signalling
The non-visual ß-arrestins are cytosolic proteins highly conserved across species that participate in a variety of signalling events, including plasma membrane receptor degradation, recycling, and signalling, and that can also act as scaffolding for kinases such as MAPK and Akt/PI3K. In Drosophila melanogaster, there is only a single non-visual ß-arrestin, encoded by kurtz, whose function is essential for neuronal activity. We have addressed the participation of Kurtz in signalling during the development of the imaginal discs, epithelial tissues requiring the activity of the Hedgehog, Wingless, EGFR, Notch, Insulin, and TGFβ pathways. Surprisingly, we found that the complete elimination of kurtz by genetic techniques has no major consequences in imaginal cells. In contrast, the over-expression of Kurtz in the wing disc causes a phenotype identical to the loss of Hedgehog signalling and prevents the expression of Hedgehog targets in the corresponding wing discs. The mechanism by which Kurtz antagonises Hedgehog signalling is to promote Smoothened internalization and degradation in a clathrin- and proteosomal-dependent manner. Intriguingly, the effects of Kurtz on Smoothened are independent of Gprk2 activity and of the activation state of the receptor. Our results suggest fundamental differences in the molecular mechanisms regulating receptor turnover and signalling in vertebrates and invertebrates, and they could provide important insights into divergent evolution of Hedgehog signalling in these organisms
Difference in the Surgical Outcome of Unilateral Cleft Lip and Palate Patients with and without Pre-Alveolar Bone Graft Orthodontic Treatment.
Presurgical orthodontic treatment before secondary alveolar bone grafting (SABG) is widely performed for cleft lip/palate patients. However, no randomized controlled trial has been published comparing SABG outcomes in patients with, and without, presurgical orthodontic treatment. This randomized, prospective, single-blinded trial was conducted between January 2012 and April 2015 to compare ABG volumes 6 months postoperatively between patients with and without presurgical orthodontic treatment. Twenty-four patients were enrolled and randomized and 22 patients completed follow-up. Patients who had presurgical orthodontics before SABG had significantly improved inclination (p < 0.001) and rotation (p < 0.001) of the central incisor adjacent to the defect, significantly improved ABG fill volume (0.81 ± 0.26 cm(3) at 6 months compared to 0.59 ± 0.22 cm(3); p < 0.05) and less residual alveolar bone defect (0.31 ± 0.08 cm(3) at 6 months compared to s 0.55 ± 0.14 cm(3); p < 0.001) compared to patients who did not have presurgical orthodontic treatment. In conclusion, orthodontic treatment combined with SABG results in superior bone volume when compared with conventional SABG alone.This article is freely available via Open Access. Click on the 'Additional Link' above to access the full-text via the publisher's site.Published (Open Access
Distribution and variability of total mercury in snow cover—a case study from a semi-urban site in Poznań, Poland
Impact of Anatomical and Viability-Guided Completeness of Revascularization on Clinical Outcomes in Ischemic Cardiomyopathy
- …
