45,322 research outputs found
Comparative study of Steel-FRP, FRP and steel reinforced coral concrete beams in their flexural performance
In this paper, a comparative study of Carbon Fiber Reinforced Polymer (CFRP) Bar and Steel-Carbon Fiber Composite Bar (SCFCB) reinforced coral concrete beams are made through a series experimental tests and theoretical analysis. The flexural capacity, crack development and failure modes of CFRP and SCFCB reinforced coral concrete were investigated in detail. They are also compared to ordinary steel reinforced coral concrete beams. The results show that under the same condition of reinforcement ratio, the SCFCB reinforced beam exhibits better performance than those of the CFRP reinforced beams, and its stiffness is slightly lower than that of the steel reinforced beam. Under the same load condition, the crack width of the SCFCB beam is between the steel reinforced beam and the CFRP bar reinforced beam. Before the steel core yields, the crack growth rate of SCFCB beam is similar to the steel reinforced beam. SCFCB has a higher strength utilization rate, about 70% -85% of its ultimate strength. The current design guidance was also examined based on the test results. It was found that the existing design specifications for FRP reinforced normal concrete is not suitable for SCFCB reinforced coral concrete structures
Comparison between the Torquato-Rintoul theory of the interface effect in composite media and elementary results
We show that the interface effect on the properties of composite media
recently proposed by Torquato and Rintoul (TR) [Phys. Rev. Lett. 75, 4067
(1995)] is in fact elementary, and follows directly from taking the limit in
the dipolar polarizability of a coated sphere: the TR ``critical values'' are
simply those that make the dipolar polarizability vanish. Furthermore, the new
bounds developed by TR either coincide with the Clausius-Mossotti (CM) relation
or provide poor estimates. Finally, we show that the new bounds of TR do not
agree particularly well with the original experimental data that they quote.Comment: 13 pages, Revtex, 8 Postscript figure
Recommended from our members
Experimental and Numerical Investigation on Progressive Collapse Resistance of Post-tensioned Precast Concrete Beam-Column Sub-assemblages
In this paper, four 1/2 scaled precast concrete (PC) beam-column sub-assemblages with high performance connection were tested under push-down loading procedure to study the load resisting mechanism of PC frames subjected to different column removal scenarios. The parameters investigated include the location of column removal and effective prestress in tendons. The test results indicated that the failure modes of unbonded post-tensioned precast concrete (PTPC) frames were different from that of reinforced concrete (RC) frames: no cracks formed in the beams and wide opening formed near the beam to column interfaces. For specimens without overhanging beams, the failure of side column was eccentric compression failure. Moreover, the load resisting mechanisms in PC frames were significantly different from that of RC frames: the compressive arch action (CAA) developed in concrete during column removal was mainly due to actively applied pre-compressive stress in the concrete; CAA will not vanish when severe crush in concrete occurred. Thus, it may provide negative contribution for load resistance when the displacement exceeds one-beam depth; the tensile force developed in the tendons could provide catenary action from the beginning of the test. Moreover, to deeper understand the behavior of tested specimens, numerical analyses were carried out. The effects of concrete strength, axial compression ratio at side columns, and loading approaches on the behavior of the sub-assemblages were also investigated based on validated numerical analysis
Assembly of hard spheres in a cylinder: a computational and experimental study
Hard spheres are an important benchmark of our understanding of natural and
synthetic systems. In this work, colloidal experiments and Monte Carlo
simulations examine the equilibrium and out-of-equilibrium assembly of hard
spheres of diameter within cylinders of diameter . Although in such a system phase transitions formally do not exist,
marked structural crossovers are observed. In simulations, we find that the
resulting pressure-diameter structural diagram echoes the densest packing
sequence obtained at infinite pressure in this range of . We also observe
that the out-of-equilibrium self-assembly depends on the compression rate. Slow
compression approximates equilibrium results, while fast compression can skip
intermediate structures. Crossovers for which no continuous line-slip exists
are found to be dynamically unfavorable, which is the source of this
difference. Results from colloidal sedimentation experiments at high P\'eclet
number are found to be consistent with the results of fast compressions, as
long as appropriate boundary conditions are used. The similitude between
compression and sedimentation results suggests that the assembly pathway does
not here sensitively depend on the nature of the out-of-equilibrium dynamics.Comment: 11 pages, 8 figures and 63 reference
The first operation and results of the Chung-Li VHF radar
The Chung-Li Very High Frequency (VHF) radar is used in the dual-mode operations, applying Doppler beam-swinging as well as the spaced-antenna-drift method. The design of the VHF radar is examined. Results of performance tests are discussed
Electrical spin protection and manipulation via gate-locked spin-orbit fields
The spin-orbit (SO) interaction couples electron spin and momentum via a
relativistic, effective magnetic field. While conveniently facilitating
coherent spin manipulation in semiconductors, the SO interaction also
inherently causes spin relaxation. A unique situation arises when the Rashba
and Dresselhaus SO fields are matched, strongly protecting spins from
relaxation, as recently demonstrated. Quantum computation and spintronics
devices such as the paradigmatic spin transistor could vastly benefit if such
spin protection could be expanded from a single point into a broad range
accessible with in-situ gate-control, making possible tunable SO rotations
under protection from relaxation. Here, we demonstrate broad, independent
control of all relevant SO fields in GaAs quantum wells, allowing us to tune
the Rashba and Dresselhaus SO fields while keeping both locked to each other
using gate voltages. Thus, we can electrically control and simultaneously
protect the spin. Our experiments employ quantum interference corrections to
electrical conductivity as a sensitive probe of SO coupling. Finally, we
combine transport data with numerical SO simulations to precisely quantify all
SO terms.Comment: 5 pages, 4 figures (color), plus supplementary information 18 pages,
8 figures (color) as ancillary arXiv pd
Cryptanalysis of the Hillery-Buzek-Berthiaume quantum secret-sharing protocol
The participant attack is the most serious threat for quantum secret-sharing
protocols. We present a method to analyze the security of quantum
secret-sharing protocols against this kind of attack taking the scheme of
Hillery, Buzek, and Berthiaume (HBB) [Phys. Rev. A 59 1829 (1999)] as an
example. By distinguishing between two mixed states, we derive the necessary
and sufficient conditions under which a dishonest participant can attain all
the information without introducing any error, which shows that the HBB
protocol is insecure against dishonest participants. It is easy to verify that
the attack scheme of Karlsson, Koashi, and Imoto [Phys. Rev. A 59, 162 (1999)]
is a special example of our results. To demonstrate our results further, we
construct an explicit attack scheme according to the necessary and sufficient
conditions. Our work completes the security analysis of the HBB protocol, and
the method presented may be useful for the analysis of other similar protocols.Comment: Revtex, 7 pages, 3 figures; Introduction modifie
Recommended from our members
Numerical studies on dynamic behavior of tubular T-joint subjected to impact loading
Joints play an important role in resisting impact loading in Tubular structures. In this paper, a finite element model validated by experimental results is developed to numerically study the failure modes and energy dissipation mechanism of tubular T-joint impacted by a drop hammer with the initial velocity of 7–10 m/s. The resistant mechanism is investigated based on the dynamic responses of the joints under impact loading. Strain, displacement and the failure modes of the T-joints are also predicted. Global and local deformations of the tubular joints are distinguished using an equal area axis method, which helps to discover the failure mechanism of the joints. Using the yield line theory, an equivalent impact force estimation method is also proposed based on the impact load versus displacement relationship. The numerical analysis and the simplified method provide a basis for impact resistance evaluation and progressive collapse mitigation of steel tubular structures in design practice in the future
Transverse momentum dependence in the perturbative calculation of pion form factor
By reanalysing transverse momentum dependence in the perturbative calculation
of pion form factor an improved expression of pion form factor which takes into
account the transverse momentum dependenc in hard scattering amplitude and
intrinsic transverse momentum dependence associated with pion wave functions is
given to leading order, which is available for momentum transfers of the order
of a few GeV as well as for . Our scheme can be extended to
evaluate the contributions to the pion form factor beyond leading order.Comment: 13 pages in LaTeX, plus 3 Postscript figure
- …
