11,976 research outputs found
Definition of socioeconomic scenarios for land surface hydrology simulations of the 21st century
Electric-dipole-induced spin resonance in a lateral double quantum dot incorporating two single domain nanomagnets
On-chip magnets can be used to implement relatively large local magnetic
field gradients in na- noelectronic circuits. Such field gradients provide
possibilities for all-electrical control of electron spin-qubits where
important coupling constants depend crucially on the detailed field
distribution. We present a double quantum dot (QD) hybrid device laterally
defined in a GaAs / AlGaAs het- erostructure which incorporates two single
domain nanomagnets. They have appreciably different coercive fields which
allows us to realize four distinct configurations of the local inhomogeneous
field distribution. We perform dc transport spectroscopy in the Pauli-spin
blockade regime as well as electric-dipole-induced spin resonance (EDSR)
measurements to explore our hybrid nanodevice. Characterizing the two
nanomagnets we find excellent agreement with numerical simulations. By
comparing the EDSR measurements with a second double QD incorporating just one
nanomagnet we reveal an important advantage of having one magnet per QD: It
facilitates strong field gradients in each QD and allows to control the
electron spins individually for instance in an EDSR experi- ment. With just one
single domain nanomagnet and common QD geometries EDSR can likely be performed
only in one QD
New first integral for twisting type-N vacuum gravitational fields with two non-commuting Killing vectors
A new first integral for the equations corresponding to twisting type-N
vacuum gravitational fields with two non-commuting Killing vectors is
introduced. A new reduction of the problem to a complex second-order ordinary
differential equation is given. Alternatively, the mentioned first integral can
be used in order to provide a first integral of the second-order complex
equation introduced in a previous treatment of the problem.Comment: 7 pages, LaTeX, uses ioplppt.sty and iopl12.sty; to be published in
Class. Quantum Gra
Spike-and-Slab Priors for Function Selection in Structured Additive Regression Models
Structured additive regression provides a general framework for complex
Gaussian and non-Gaussian regression models, with predictors comprising
arbitrary combinations of nonlinear functions and surfaces, spatial effects,
varying coefficients, random effects and further regression terms. The large
flexibility of structured additive regression makes function selection a
challenging and important task, aiming at (1) selecting the relevant
covariates, (2) choosing an appropriate and parsimonious representation of the
impact of covariates on the predictor and (3) determining the required
interactions. We propose a spike-and-slab prior structure for function
selection that allows to include or exclude single coefficients as well as
blocks of coefficients representing specific model terms. A novel
multiplicative parameter expansion is required to obtain good mixing and
convergence properties in a Markov chain Monte Carlo simulation approach and is
shown to induce desirable shrinkage properties. In simulation studies and with
(real) benchmark classification data, we investigate sensitivity to
hyperparameter settings and compare performance to competitors. The flexibility
and applicability of our approach are demonstrated in an additive piecewise
exponential model with time-varying effects for right-censored survival times
of intensive care patients with sepsis. Geoadditive and additive mixed logit
model applications are discussed in an extensive appendix
Full photon statistics of a light beam transmitted through an optomechanical system
In this paper, we study the full statistics of photons transmitted through an
optical cavity coupled to nanomechanical motion. We analyze the entire temporal
evolution of the photon correlations, the Fano factor, and the effects of
strong laser driving, all of which show pronounced features connected to the
mechanical backaction. In the regime of single-photon strong coupling, this
allows us to predict a transition from sub-Poissonian to super-Poissonian
statistics for larger observation time intervals. Furthermore, we predict
cascades of transmitted photons triggered by multi-photon transitions. In this
regime, we observe Fano factors that are drastically enhanced due to the
mechanical motion.Comment: 8 pages, 7 figure
Twisting type-N vacuum fields with a group
We derive the equations corresponding to twisting type-N vacuum gravitational
fields with one Killing vector and one homothetic Killing vector by using the
same approach as that developed by one of us in order to treat the case with
two non-commuting Killing vectors. We study the case when the homothetic
parameter takes the value -1, which is shown to admit a reduction to a
third-order real ordinary differential equation for this problem, similar to
that previously obtained by one of us when two Killing vectors are present.Comment: LaTeX, 11 pages. To be published in Classical and Quantum Gravit
Heating in the Accreted Neutron Star Ocean: Implications for Superburst Ignition
We perform a self-consistent calculation of the thermal structure in the
crust of a superbursting neutron star. In particular, we follow the
nucleosynthetic evolution of an accreted fluid element from its deposition into
the atmosphere down to a depth where the electron Fermi energy is 20 MeV. We
include temperature-dependent continuum electron capture rates and realistic
sources of heat loss by thermal neutrino emission from the crust and core. We
show that, in contrast to previous calculations, electron captures to excited
states and subsequent gamma-emission significantly reduce the local heat loss
due to weak-interaction neutrinos. Depending on the initial composition these
reactions release up to a factor of 10 times more heat at densities < 10^{11}
g/cc than obtained previously. This heating reduces the ignition depth of
superbursts. In particular, it reduces the discrepancy noted by Cumming et al.
between the temperatures needed for unstable 12C ignition on timescales
consistent with observations and the reduction in crust temperature from Cooper
pair neutrino emission.Comment: 10 pages, 11 figures, the Astrophysical Journal, in press (scheduled
for v. 662). Revised from v1 in response to referee's comment
Preparation of Subradiant States using Local Qubit Control in Circuit QED
Transitions between quantum states by photon absorption or emission are
intimately related to symmetries of the system which lead to selection rules
and the formation of dark states. In a circuit quantum electrodynamics setup,
in which two resonant superconducting qubits are coupled through an on-chip
cavity and driven via the common cavity field, one single-excitation state
remains dark. Here, we demonstrate that this dark state can be excited using
local phase control of individual qubit drives to change the symmetry of the
driving field. We observe that the dark state decay via spontaneous emission
into the cavity is suppressed, a characteristic signature of subradiance. This
local control technique could be used to prepare and study highly correlated
quantum states of cavity-coupled qubits.Comment: 5 pages, 4 figure
Interaction-induced dephasing of Aharonov-Bohm oscillations
We study the effect of the electron-electron interaction on the amplitude of
mesoscopic Aharonov-Bohm oscillations in quasi-one-dimensional (Q1D) diffusive
rings. We show that the dephasing length L_phi^AB governing the damping factor
exp(-2piR / L_phi^AB) of the oscillations is parametrically different from the
common dephasing length for the Q1D geometry. This is due to the fact that the
dephasing is governed by energy transfers determined by the ring circumference
2piR, making L_phi^AB R-dependent.Comment: 4 pages, 2 figures. Minor changes, final version published in PR
- …
