286,449 research outputs found

    Measuring and interpreting current permanent and transitory earnings and dividends : methods and applications / BEBR No. 815

    Get PDF
    Bibliography: p. 21-22

    Vicarious learning through capturing task‐directed discussions

    Get PDF
    The vicarious learner group has been developing a multimedia database system to promote and enhance the role of dialogue in learning. A specific interest, and the origin of the projects' collective name, is in the question of whether and how dialogue can be helpfully ‘reused’. What benefits can students gain from dialogue as observers, not just as participants? We describe our initial attempts to generate and capture educationally effective discourse exchanges amongst and between students and tutors. Problems encountered with available CMC discourse formats led to our development of a set of Task Directed Discussions (TDDs). A medium‐sized corpus of discourse exchanges was collected using the TDDs. A selection of nearly two hundred of these TDD exchanges formed the multimedia discourse database to the implemented prototype system, Dissemination. Initial results from a controlled experiment and evaluation of Dissemination are outline

    Image data compression application to imaging spectrometers

    Get PDF
    The potential of image data compression techniques to satisfy the anticipated requirements of imaging spectrometer missions is discussed. Noiseless coding, rate controlled compression, cluster compression, and error protection are addressed

    Solar-driven liquid metal magnetohydrodynamic generator

    Get PDF
    A solar oven heated by concentrated solar radiation as the heat source of a liquid metal magnetohydrodynamic (LMMHD) power generation system is proposed. The design allows the production of electric power in space, as well as on Earth, at high rates of efficiency. Two types of the solar oven suitable for the system are discussed

    Microstrip antenna array with parasitic elements

    Get PDF
    Discussed is the design of a large microstrip antenna array in terms of subarrays consisting of one fed patch and several parasitic patches. The potential advantages of this design are discussed. Theoretical radiation patterns of a subarray in the configuration of a cross are presented

    Micro-electroforming metallic bipolar electrodes for mini-DMFC stacks

    Get PDF
    This paper describes the development of metallic bipolar plate fabrication using micro-electroforming process for mini-DMFC (direct methanol fuel cell) stacks. Ultraviolet (UV) lithography was used to define micro-fluidic channels using a photomask and exposure process. Micro-fluidic channels mold with 300 micrometers thick and 500 micrometers wide were firstly fabricated in a negative photoresist onto a stainless steel plate. Copper micro-electroforming was used to replicate the micro-fluidic channels mold. Following by sputtering silver (Ag) with 1.2 micrometers thick, the metallic bipolar plates were completed. The silver layer is used for corrosive resistance. The completed mini-DMFC stack is a 2x2 cm2 fuel cell stack including a 1.5x1.5 cm2 MEA (membrane electrode assembly). Several MEAs were assembly into mini-DMFC stacks using the completed metallic bipolar plates. All test results showed the metallic bipolar plates suitable for mini-DMFC stacks. The maximum output power density is 9.3mW/cm2 and current density is 100 mA/cm2 when using 8 vol. % methanol as fuel and operated at temperature 30 degrees C. The output power result is similar to other reports by using conventional graphite bipolar plates. However, conventional graphite bipolar plates have certain difficulty to be machined to such micro-fluidic channels. The proposed micro-electroforming metallic bipolar plates are feasible to miniaturize DMFC stacks for further portable 3C applications.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/handle/2042/16838

    Computer-Aided Modeling and Analysis of Power Processing Systems (CAMAPPS), phase 1

    Get PDF
    The large-signal behaviors of a regulator depend largely on the type of power circuit topology and control. Thus, for maximum flexibility, it is best to develop models for each functional block a independent modules. A regulator can then be configured by collecting appropriate pre-defined modules for each functional block. In order to complete the component model generation for a comprehensive spacecraft power system, the following modules were developed: solar array switching unit and control; shunt regulators; and battery discharger. The capability of each module is demonstrated using a simplified Direct Energy Transfer (DET) system. Large-signal behaviors of solar array power systems were analyzed. Stability of the solar array system operating points with a nonlinear load is analyzed. The state-plane analysis illustrates trajectories of the system operating point under various conditions. Stability and transient responses of the system operating near the solar array's maximum power point are also analyzed. The solar array system mode of operation is described using the DET spacecraft power system. The DET system is simulated for various operating conditions. Transfer of the software program CAMAPPS (Computer Aided Modeling and Analysis of Power Processing Systems) to NASA/GSFC (Goddard Space Flight Center) was accomplished

    Critical dynamics of the k-core pruning process

    Full text link
    We present the theory of the k-core pruning process (progressive removal of nodes with degree less than k) in uncorrelated random networks. We derive exact equations describing this process and the evolution of the network structure, and solve them numerically and, in the critical regime of the process, analytically. We show that the pruning process exhibits three different behaviors depending on whether the mean degree of the initial network is above, equal to, or below the threshold _c corresponding to the emergence of the giant k-core. We find that above the threshold the network relaxes exponentially to the k-core. The system manifests the phenomenon known as "critical slowing down", as the relaxation time diverges when tends to _c. At the threshold, the dynamics become critical characterized by a power-law relaxation (1/t^2). Below the threshold, a long-lasting transient process (a "plateau" stage) occurs. This transient process ends with a collapse in which the entire network disappears completely. The duration of the process diverges when tends to _c. We show that the critical dynamics of the pruning are determined by branching processes of spreading damage. Clusters of nodes of degree exactly k are the evolving substrate for these branching processes. Our theory completely describes this branching cascade of damage in uncorrelated networks by providing the time dependent distribution function of branching. These theoretical results are supported by our simulations of the kk-core pruning in Erdos-Renyi graphs.Comment: 12 pages, 10 figure
    corecore