172,890 research outputs found
A comparison of smooth specimen and analytical simulation techniques for notched members at elevated temperatures
Experimental strain measurements have been made at the highly strained regions on notched plate specimens that were made of Hastelloy X. Tests were performed at temperatures up to 1,600 F. Variable load patterns were chosen so as to produce plastic and creep strains. Were appropriate, notch root stresses were experimentally estimated by subjecting a smooth specimen to the measured notch root strains. The results of three analysis techniques are presented and compared to the experimental data. The most accurate results were obtained from an analysis procedure that used a smooth specimen and the Neuber relation to simulate the notch root stress-strain response. When a generalized constitutive relation was used with the Neuber relation, good results were also obtained, however, these results were not as accurate as those obtained when the smooth specimen was used directly. Finally, a general finite element program, ANYSIS, was used which resulted in acceptable solutions, but, these were the least accurate predictions
Summary results of the DOE flywheel development effort
The technology and applications evaluation task focuses on defining performance and cost requirements for flywheels in the various areas of application. To date the DOE program has focused on automotive applications. The composite materials effort entails the testing of new commercial composites to determine their engineering properties. The rotor and containment development work uses data from these program elements to design and fabricate flywheels. The flywheels are then tested at the Oak Ridge Flywheel Evaluation Laboratory and their performance is evaluated to indicate possible areas for improvement. Once a rotor has been fully developed it is transferred to the private sector
Experimental evaluation criteria for constitutive models of time dependent cyclic plasticity
Notched members were tested at temperatures far above those recorded till now. Simulation of the notch root stress response was accomplished to establish notch stress-strain behavior. Cyclic stress-strain profiles across the net-section were recorded and on-line direct notch strain control was accomplished. Data are compared to three analysis techniques with good results. The objective of the study is to generate experimental data that can be used to evaluate the accuracy of constitutive models of time dependent cyclic plasticity
Experimental Verification of the Number Relation at Room and Elevated Temperatures
The accuracy of the Neuber equation for predicting notch root stress-strain behavior at room temperature and at 650 C was experimentally investigated. Strains on notched specimens were measured with a non-contacting, interferometric technique and stresses were simulated with smooth specimens. Predictions of notch root stress-strain response were made from the Neuber Equation and smooth specimen behavior. Neuber predictions gave very accurate results at room temperature. However, the predicted interaction of creep and stress relaxation differed from experimentally measured behavior at 650 C
Measuring the Higgs to Photon-Photon Branching Ratio at the Next Linear Collider
We examine the prospects for measuring the photon-photon branching ratio of a
Standard-Model-like Higgs boson () at the Next Linear Collider when
the Higgs boson is produced via --fusion: .
In particular, we study the accuracy of such a measurement and the statistical
significance of the associated signal as a function of the electromagnetic
calorimeter resolution and the Higgs boson mass. We compare results for the
--fusion production/measurement mode with the results obtained for the
production/measurement mode in a
parallel earlier study.Comment: 5 pages, full postscript file also available via anonymous ftp at
ftp://ucdhep.ucdavis.edu/gunion/htogamgam_sm96.ps To appear in ``Proceedings
of the 1996 DPF/DPB Summer Study on New Directions for High Energy Physics'
Cooperative spontaneous emission from indistinguishable atoms in arbitrary motional quantum states
We investigate superradiance and subradiance of indistinguishable atoms with
quantized motional states, starting with an initial total state that factorizes
over the internal and external degrees of freedom of the atoms. Due to the
permutational symmetry of the motional state, the cooperative spontaneous
emission, governed by a recently derived master equation [F. Damanet et al.,
Phys. Rev. A 93, 022124 (2016)], depends only on two decay rates and
and a single parameter describing the
dipole-dipole shifts. We solve the dynamics exactly for atoms,
numerically for up to 30 atoms, and obtain the large--limit by amean-field
approach. We find that there is a critical difference that
depends on beyond which superradiance is lost. We show that exact
non-trivial dark states (i.e. states other than the ground state with vanishing
spontaneous emission) only exist for , and that those states
(dark when ) are subradiant when .Comment: 14 pages, 8 figure
On the Margulis constant for Kleinian groups, I curvature
The Margulis constant for Kleinian groups is the smallest constant such
that for each discrete group and each point in the upper half space
, the group generated by the elements in which move less
than distance c is elementary. We take a first step towards determining this
constant by proving that if is nonelementary and discrete
with parabolic or elliptic of order , then every point in
is moved at least distance by or where
. This bound is sharp
Development of nondestructive testing techniques for honeycomb heat shields, volume I Final report, 1 Jul. 1964 - 29 Sep. 1966
Development of nondestructive testing system, using ultrasonic techniques, for detecting disbonds in composite honeycomb heat shields of Saturn launch vehicl
- …
