107,094 research outputs found
Unitary Fermi Gas in a Harmonic Trap
We present an {\it ab initio} calculation of small numbers of trapped,
strongly interacting fermions using the Green's Function Monte Carlo method
(GFMC). The ground state energy, density profile and pairing gap are calculated
for particle numbers using the parameter-free "unitary"
interaction. Trial wave functions are taken of the form of correlated pairs in
a harmonic oscillator basis. We find that the lowest energies are obtained with
a minimum explicit pair correlation beyond that needed to exploit the
degeneracy of oscillator states. We find that energies can be well fitted by
the expression where is the
Thomas-Fermi energy of a noninteracting gas in the trap and is a
pairing gap. There is no evidence of a shell correction energy in the
systematics, but the density distributions show pronounced shell effects. We
find the value for the pairing gap. This is smaller
than the value found for the uniform gas at a density corresponding to the
central density of the trapped gas.Comment: 2 figures, 2 table
Optical selection rules of graphene nanoribbons
Optical selection rules for one-dimensional graphene nanoribbons are
analytically studied and clarified based on the tight-binding model. A
theoretical explanation, through analyzing the velocity matrix elements and the
features of wavefunctions, can account for the selection rules, which depend on
the edge structure of nanoribbon, namely armchair or zigzag edges. The
selection rule of armchair nanoribbons is \Delta J=0, and the optical
transitions occur from the conduction to valence subbands of the same index.
Such a selection rule originates in the relationships between two sublattices
and between conduction and valence subbands. On the other hand, zigzag
nanoribbons exhibit the selection rule |\Delta J|=odd, which results from the
alternatively changing symmetry property as the subband index increases. An
efficiently theoretical prediction on transition energies is obtained with the
application of selection rules. Furthermore, the energies of band edge states
become experimentally attainable via optical measurements
A systematic study of Rayleigh-Brillouin scattering in air, N2 and O2 gases
Spontaneous Rayleigh-Brillouin scattering experiments in air, N2 and O2 have
been performed for a wide range of temperatures and pressures at a wavelength
of 403 nm and at a 90 degrees scattering angle. Measurements of the
Rayleigh-Brillouin spectral scattering profile were conducted at high
signal-to-noise ratio for all three species, yielding high-quality spectra
unambiguously showing the small differences between scattering in air, and its
constituents N2 and O2. Comparison of the experimental spectra with
calculations using the Tenti S6 model, developed in 1970s based on linearized
kinetic equations for molecular gases, demonstrates that this model is valid to
high accuracy. After previous measurements performed at 366 nm, the Tenti S6
model is here verified for a second wavelength of 403 nm. Values for the bulk
viscosity for the gases are derived by optimizing the model to the
measurements. It is verified that the bulk viscosity parameters obtained from
previous experiments at 366 nm, are valid for wavelengths of 403 nm. Also for
air, which is treated as a single-component gas with effective gas transport
coefficients, the Tenti S6 treatment is validated for 403 nm as for the
previously used wavelength of 366 nm, yielding an accurate model description of
the scattering profiles for a range of temperatures and pressures, including
those of relevance for atmospheric studies. It is concluded that the Tenti S6
model, further verified in the present study, is applicable to LIDAR
applications for exploring the wind velocity and the temperature profile
distributions of the Earth's atmosphere. Based on the present findings,
predictions can be made on the spectral profiles for a typical LIDAR
backscatter geometry, which deviate by some 7 percent from purely Gaussian
profiles at realistic sub-atmospheric pressures occurring at 3-5 km altitude in
the Earth's atmosphere
Valley-dependent Brewster angles and Goos-Hanchen effect in strained graphene
We demonstrate theoretically how local strains in graphene can be tailored to
generate a valley polarized current. By suitable engineering of local strain
profiles, we find that electrons in opposite valleys (K or K') show different
Brewster-like angles and Goos-H\"anchen shifts, exhibiting a close analogy with
light propagating behavior. In a strain-induced waveguide, electrons in K and
K' valleys have different group velocities, which can be used to construct a
valley filter in graphene without the need for any external fields.Comment: 5 pages, 4 figure
Resonant Tunneling through S- and U-shaped Graphene Nanoribbons
We theoretically investigate resonant tunneling through S- and U-shaped
nanostructured graphene nanoribbons. A rich structure of resonant tunneling
peaks are found eminating from different quasi-bound states in the middle
region. The tunneling current can be turned on and off by varying the Fermi
energy. Tunability of resonant tunneling is realized by changing the width of
the left and/or right leads and without the use of any external gates.Comment: 6 pages, 7 figure
A flowing plasma model to describe drift waves in a cylindrical helicon discharge
A two-fluid model developed originally to describe wave oscillations in the
vacuum arc centrifuge, a cylindrical, rapidly rotating, low temperature and
confined plasma column, is applied to interpret plasma oscillations in a RF
generated linear magnetised plasma (WOMBAT), with similar density and field
strength. Compared to typical centrifuge plasmas, WOMBAT plasmas have slower
normalised rotation frequency, lower temperature and lower axial velocity.
Despite these differences, the two-fluid model provides a consistent
description of the WOMBAT plasma configuration and yields qualitative agreement
between measured and predicted wave oscillation frequencies with axial field
strength. In addition, the radial profile of the density perturbation predicted
by this model is consistent with the data. Parameter scans show that the
dispersion curve is sensitive to the axial field strength and the electron
temperature, and the dependence of oscillation frequency with electron
temperature matches the experiment. These results consolidate earlier claims
that the density and floating potential oscillations are a resistive drift
mode, driven by the density gradient. To our knowledge, this is the first
detailed physics model of flowing plasmas in the diffusion region away from the
RF source. Possible extensions to the model, including temperature
non-uniformity and magnetic field oscillations, are also discussed
Confined magnetic guiding orbit states
We show how snake-orbit states which run along a magnetic edge can be
confined electrically. We consider a two-dimensional electron gas (2DEG)
confined into a quantum wire, subjected to a strong perpendicular and steplike
magnetic field . Close to this magnetic step new, spatially confined
bound states arise as a result of the lateral confinement and the magnetic
field step. The number of states, with energy below the first Landau level,
increases as becomes stronger or as the wire width becomes larger. These
bound states can be understood as an interference between two
counter-propagating one-dimensional snake-orbit states.Comment: 4 pages, 4 figure
Structural optimization of an alternate design for the space shuttle solid rocket booster field joint
A structural optimization procedure is used to determine the shape of an alternate design for the shuttle solid rocket booster field joint. In contrast to the tang and clevis design of the existing joint, this alternate design consists of two flanges bolted together. Configurations with 150 studs of 1 1/8 in. diameter and 135 studs of 1 3/16 in. diameter are considered. Using a nonlinear programming procedure, the joint weight is minimized under constraints on either von Mises or maximum normal stresses, joint opening and geometry. The procedure solves the design problem by replacing it by a sequence of approximate (convex) subproblems; the pattern of contact between the joint halves is determined every few cycles by a nonliner displacement analysis. The minimum weight design has 135 studs of 1 3/16 in. diameter and is designed under constraints on normal stresses. It weighs 1144 lb per joint more than the current tang and clevis design
- …
