28,125 research outputs found
Measurement in control and discrimination of entangled pairs under self-distortion
Quantum correlations and entanglement are fundamental resources for quantum
information and quantum communication processes. Developments in these fields
normally assume these resources stable and not susceptible of distortion. That
is not always the case, Heisenberg interactions between qubits can produce
distortion on entangled pairs generated for engineering purposes (e. g. for
quantum computation or quantum cryptography). Experimental work shows how to
produce entangled spin qubits in quantum dots and electron gases, so its
identification and control are crucial for later applications. The presence of
parasite magnetic fields modifies the expected properties and behavior for
which the pair was intended. Quantum measurement and control help to
discriminate the original state in order to correct it or, just to try of
reconstruct it using some procedures which do not alter their quantum nature.
Two different kinds of quantum entangled pairs driven by a Heisenberg
Hamiltonian with an additional inhomogeneous magnetic field which becoming
self-distorted, can be reconstructed without previous discrimination by adding
an external magnetic field, with fidelity close to 1 (with respect to the
original state, but without discrimination). After, each state can be more
efficiently discriminated. The aim of this work is to show how combining both
processes, first reconstruction without discrimination and after discrimination
with adequate non-local measurements, it's possible a) improve the
discrimination, and b) reprepare faithfully the original states. The complete
process gives fidelities better than 0.9. In the meanwhile, some results about
a class of equivalence for the required measurements were found. This property
lets us select the adequate measurement in order to ease the repreparation
after of discrimination, without loss of entanglement.Comment: 6 figure
Poincare series of collections of plane valuations
In earlier papers there were given formulae for the Poincare series of
multi-index filtrations on the ring of germs of functions of two variables
defined by collections of valuations corresponding to (reducible) plane curve
singularities and by collections of divisorial ones. It was shown that the
Poincare series of a collection of divisorial valuations determines the
topology of the collection of divisors. Here we give a formula for the Poincare
series of a general collection of valuations on the ring of germs of functions
of two variables centred at the origin and prove a generalization of the
statement that the Poincare series determines the topology of the collection
Critical Lines and Massive Phases in Quantum Spin Ladders with Dimerization
We determine the existence of critical lines in dimerized quantum spin
ladders in their phase diagram of coupling constants using the finite-size DMRG
algorithm. We consider both staggered and columnar dimerization patterns, and
antiferromagnetic and ferromagnetic inter-leg couplings. The existence of
critical phases depends on the precise combination of these patterns. The
nature of the massive phases separating the critical lines are characterized
with generalized string order parameters that determine their valence bond
solid (VBS) content.Comment: 9 pages 10 figure
The emergence of classical behavior in magnetic adatoms
A wide class of nanomagnets shows striking quantum behavior, known as quantum
spin tunneling (QST): instead of two degenerate ground states with opposite
magnetizations, a bonding-antibonding pair forms, resulting in a splitting of
the ground state doublet with wave functions linear combination of two
classically opposite magnetic states, leading to the quenching of their
magnetic moment. Here we study how QST is destroyed and classical behavior
emerges in the case of magnetic adatoms, as the strength of their coupling,
either to the substrate or to each other, is increased. Both spin-substrate and
spin-spin coupling renormalize the QST splitting to zero allowing the
environmental decoherence to eliminate superpositions between classical states,
leading to the emergence of spontaneous magnetization.Comment: 5 pages, 4 figure
- …
