160,647 research outputs found

    A new three-parameter correlation for gamma-ray bursts with a plateau phase in the afterglow

    Full text link
    Gamma ray bursts (GRBs) have great advantages for their huge burst energies, luminosities and high redshifts in probing the Universe. A few interesting luminosity correlations of GRBs have been used to test cosmology models. Especially, for a subsample of long GRBs with known redshifts and a plateau phase in the afterglow, a correlation between the end time of the plateau phase (in the GRB rest frame) and the corresponding X-ray luminosity has been found. In this paper, we re-analyze the subsample and found that a significantly tighter correlation exists when we add a third parameter, i.e. the isotropic γ\gamma-ray energy release, into the consideration. Additionally, both long and intermediate duration GRBs are consistent with the same three-parameter correlation equation. It is argued that the new three-parameter correlation is consistent with the hypothesis that the subsample of GRBs with a plateau phase in the afterglow be associated with the birth of rapidly rotating magnetars, and that the plateau be due to the continuous energy-injection from the magnetar. It is suggested that the newly born millisecond magnetars associated with GRBs might provide a good standard candle in the Universe.Comment: 11 pages, 3 figures, 1 table; A&A, in pres

    New filter technique improves home television reception

    Get PDF
    Program studies and designs combline filters and analyzes their effectiveness in improving TV quality. Signal tracking methods are improved. Combline phase-lock loop provides significant sensitivity improvement above and below threshold

    N K and Delta K states in the chiral SU(3) quark model

    Full text link
    The isospin I=0 and I=1 kaon-nucleon SS, PP, DD, FF wave phase shifts are studied in the chiral SU(3) quark model by solving the resonating group method (RGM) equation. The calculated phase shifts for different partial waves are in agreement with the experimental data. Furthermore, the structures of the ΔK\Delta K states with L=0, I=1 and I=2 are investigated. We find that the interaction between Δ\Delta and KK in the case of L=0, I=1 is attractive, which is not like the situation of the NKNK system, where the SS-wave interactions between NN and KK for both I=0 and I=1 are repulsive. Our numerical results also show that when the model parameters are taken to be the same as in our previous NNNN and YNYN scattering calculations, the ΔK\Delta K state with L=0 and I=1 is a weakly bound state with about 2 MeV binding energy, while the one with I=2 is unbound in the present one-channel calculation.Comment: 14 pages, 6 figures. PRC70,064004(2004

    Kaon-nucleon interaction in the extended chiral SU(3) quark model

    Full text link
    The chiral SU(3) quark model is extended to include the coupling between the quark and vector chiral fields. The one-gluon exchange (OGE) which dominantly governs the short-range quark-quark interaction in the original chiral SU(3) quark model is now nearly replaced by the vector-meson exchange. Using this model, the isospin I=0 and I=1 kaon-nucleon S, P, D, F wave phase shifts are dynamically studied by solving the resonating group method (RGM) equation. Similar to those given by the original chiral SU(3) quark model, the calculated results for many partial waves are consistent with the experiment, while there is no improvement in this new approach for the P_{13} and D_{15} channels, of which the theoretical phase shifts are too much repulsive and attractive respectively when the laboratory momentum of the kaon meson is greater than 300 MeV.Comment: 19 pages, 16 figures. Accepted by Phys. Rev.

    Transition Temperature of a Uniform Imperfect Bose Gas

    Full text link
    We calculate the transition temperature of a uniform dilute Bose gas with repulsive interactions, using a known virial expansion of the equation of state. We find that the transition temperature is higher than that of an ideal gas, with a fractional increase K_0(na^3)^{1/6}, where n is the density and a is the S-wave scattering length, and K_0 is a constant given in the paper. This disagrees with all existing results, analytical or numerical. It agrees exactly in magnitude with a result due to Toyoda, but has the opposite sign.Comment: Email correspondence to [email protected] ; 2 pages using REVTe

    Micromachined Millimetre-Wave Passive Components at 38 and 77 GHz

    Get PDF
    A precision micro-fabrication technique has been developed for millimetre-wave components of air-filled three-dimensional structures, such as rectangular coaxial lines or waveguides. The devices are formed by bonding several layers of micromachining defined slices with a thickness of a few hundred micrometres. The slices are thickphotoresist SU8 defined by photolithography, or silicon with a pattern defined by deep reactive ion etching; both are coated with gold by evaporation. The process is simple, and low-cost, as compared with conventional precision metal machining, but yields mm-wave components with good performance. The components are light weight and truly airfilled with no dielectric support. This paper reviews several of these micromachined mm-wave components at 38 and 77 GHz for communications and radar applications

    Gamma-Ray Burst Afterglows from Realistic Fireballs

    Get PDF
    A GRB afterglow has been commonly thought to be due to continuous deceleration of a postburst fireball. Many analytical models have made simplifications for deceleration dynamics of the fireball and its radiation property, although they are successful at explaining the overall features of the observed afterglows. We here propose a model for a GRB afterglow in which the evolution of a postburst fireball is in an intermediate case between the adiabatic and highly radiative expansion. In our model, the afterglow is both due to the contribution of the adiabatic electrons behind the external blastwave of the fireball and due to the contribution of the radiative electrons. In addition, this model can describe evolution of the fireball from the extremely relativistic phase to the non-relativistic phase. Our calculations show that the fireball will go to the adiabatic expansion phase after about a day if the accelerated electrons are assumed to occupy the total internal energy. In all cases considered, the fireball will go to the mildly relativistic phase about 10410^4 seconds later, and to the non-relativistic phase after several days. These results imply that the relativistic adiabatic model cannot describe the deceleration dynamics of the several-days-later fireball. The comparison of the calculated light curves with the observed results at late times may imply the presence of impulsive events or energy injection with much longer durations.Comment: 18 pages, 10 figures, plain latex file, submitted to Ap
    corecore