255,788 research outputs found

    Pinned Bilayer Wigner Crystals with Pseudospin Magnetism

    Full text link
    We study a model of \textit{pinned} bilayer Wigner crystals (WC) and focus on the effects of interlayer coherence (IC) on pinning. We consider both a pseudospin ferromagnetic WC (FMWC) with IC and a pseudospin antiferromagnetic WC (AFMWC) without IC. Our central finding is that a FMWC can be pinned more strongly due to the presence of IC. One specific mechanism is through the disorder induced interlayer tunneling, which effectively manifests as an extra pinning in a FMWC. We also construct a general "effective disorder" model and effective pinning Hamiltonian for the case of FMWC and AFMWC respectively. Under this framework, pinning in the presence of IC involves \textit{interlayer} spatial correlation of disorder in addition to intralayer correlation, leading to \textit{enhanced} pinning in the FMWC. The pinning mode frequency (\wpk) of a FMWC is found to decease with the effective layer separation, whereas for an AFMWC the opposite behavior is expected. An abrupt drop of \wpk is predicted at a transition from a FMWC to AFMWC. Possible effects of in-plane magnetic fields and finite temperatures are addressed. Finally we discuss some other possible ramifications of the FMWC as an electronic supersolid-like phase.Comment: Slightly revised. The final version is published on PR

    Is flux rope a necessary condition for the progenitor of coronal mass ejections?

    Full text link
    A magnetic flux rope structure is believed to exist in most coronal mass ejections (CMEs). However, it has been long debated whether the flux rope exists before eruption or is formed during eruption via magnetic reconnection. The controversy has been continuing because of our lack of routine measurements of the magnetic field in the pre-eruption structure, such as solar filaments. However, recently an indirect method was proposed to infer the magnetic field configuration based on the sign of helicity and the bearing direction of the filament barbs. In this paper, we apply this method to two erupting filament events, one on 2014 September 2 and the other on 2011 March 7, and find that the first filament is supported by a magnetic flux rope and the second filament is supported by a sheared arcade, i.e., the first one is an inverse-polarity filament and the second one is a normal-polarity filament. With the identification of the magnetic configurations in these two filaments, we stress that a flux rope is not a necessary condition for the pre-CME structure.Comment: 26 pages, 11 figures, accepted for publication in Ap

    Statistical Analysis of Filament Features Based on the H{\alpha} Solar Images from 1988 to 2013 by Computer Automated Detection Method

    Full text link
    We improve our filament automated detection method which was proposed in our previous works. It is then applied to process the full disk Hα\alpha data mainly obtained by Big Bear Solar Observatory (BBSO) from 1988 to 2013, spanning nearly 3 solar cycles. The butterfly diagrams of the filaments, showing the information of the filament area, spine length, tilt angle, and the barb number, are obtained. The variations of these features with the calendar year and the latitude band are analyzed. The drift velocities of the filaments in different latitude bands are calculated and studied. We also investigate the north-south (N-S) asymmetries of the filament numbers in total and in each subclass classified according to the filament area, spine length, and tilt angle. The latitudinal distribution of the filament number is found to be bimodal. About 80% of all the filaments have tilt angles within [0{\deg}, 60{\deg}]. For the filaments within latitudes lower (higher) than 50{\deg} the northeast (northwest) direction is dominant in the northern hemisphere and the southeast (southwest) direction is dominant in the southern hemisphere. The latitudinal migrations of the filaments experience three stages with declining drift velocities in each of solar cycles 22 and 23, and it seems that the drift velocity is faster in shorter solar cycles. Most filaments in latitudes lower (higher) than 50{\deg} migrate toward the equator (polar region). The N-S asymmetry indices indicate that the southern hemisphere is the dominant hemisphere in solar cycle 22 and the northern hemisphere is the dominant one in solar cycle 23.Comment: 51 pages, 12 tables, 25 figures, accepted for publication in ApJ

    Detection of X-ray-Emitting Hypernova Remnants in M101

    Full text link
    Based on an ultra deep (230 ks) ROSAT HRI imaging of M101, we have detected 5 X-ray sources that coincide spatially with optical emission line features previously classified as supernova remnants in this nearby galaxy. Two of these coincidences (SNR MF83 and NGC5471B) most likely represent the true physical association of X-ray emission with shock-heated interstellar gas. MF83, with a radius of ~ 134 pc, is one of the largest remnants known. NGC5471B, with a radius of 30 pc and a velocity of at least 350 km/s (FWZI), is extremely bright in both radio and optical. The X-ray luminosities of these two shell-like remnants are 1\sim 1 and 3×1038ergs/s3 \times 10^{38} ergs/s (0.5-2 keV), about an order of magnitude brighter than the brightest supernova remnants known in our Galaxy and in the Magellanic Clouds. The inferred blastwave energy is 3×1052ergs\sim 3 \times 10^{52} ergs for NGC5471B and 3×1053\sim 3 \times 10^{53} ergs for MF83. Therefore, the remnants likely originate in hypernovae, which are a factor of 10\gtrsim 10 more energetic than canonical supernovae and are postulated as being responsible for Gamma-ray bursts observed at cosmological distances. The study of such hypernova remnants in nearby galaxies has the potential to provide important constraints on the progenitor type, rate, energetics, and beaming effect of Gamma-ray bursts.Comment: 10 pages, 2 gif figures, Accepted for publication in Astrophysical Journal Letter
    corecore