42,649 research outputs found
Magnetic impurity in the vicinity of a vacancy in bilayer graphene
We use quantum Monte Carlo method to study a magnetic impurity located next
to a vacancy in bilayer graphene with Bernal stacking. Due to the broken
symmetry between two sublattices in bilayer system, there exist two different
types of vacancy induced localized state. We find that the magnetic property of
the adatom located on the adjacent site of the vacancy depends on whether the
vacancy belongs to A or B sublattice. In general, local moment is more strongly
suppressed if the vacancy belongs to the sublattice A when . We
switch the values of the chemical potential and study the basic thermodynamic
quantities and the correlation functions between the magnetic adatom and the
carbon sites.Comment: 3 pages, 4 figures, conferenc
A novel approach for the assessment of morphological evolution based on observed water levels in tide-dominated estuaries
Assessing the impacts of both natural (e.g., tidal forcing from the ocean) and human-induced changes (e.g., dredging for navigation, land reclamation) on estuarine morphology is particularly important for the protection and management of the estuarine environment. In this study, a novel analytical approach is proposed for the assessment of estuarine morphological evolution in terms of tidally averaged depth on the basis of the observed water levels along the estuary. The key lies in deriving a relationship between wave celerity and tidal damping or amplification. For given observed water levels at two gauging stations, it is possible to have a first estimation of both wave celerity (distance divided by tidal travelling time) and tidal damping or amplification rate (tidal range difference divided by distance), which can then be used to predict the morphological changes via an inverse analytical model for tidal hydrodynamics. The proposed method is applied to the Lingdingyang Bay of the Pearl River Estuary, located on the southern coast of China, to analyse the historical development of the tidal hydrodynamics and morphological evolution. The analytical results show surprisingly good correspondence with observed water depth and volume in this system. The merit of the proposed method is that it provides a simple approach for understanding the decadal evolution of the estuarine morphology through the use of observed water levels, which are usually available and can be easily measured.National Key R&D of China (Grant No.
2016YFC0402601), National Natural Science Foundation of China (Grant No. 51979296, 51709287,
41706088, 41476073), Fundamental Research Funds for the Central Universities (No.18lgpy29)
and from the Water Resource Science and Technology Innovation Program of Guangdong Province (Grant
No. 2016-20, 2016-21). The work of the second author was supported by FCT research contracts
IF/00661/2014/CP1234.info:eu-repo/semantics/submittedVersio
Smart Content Recognition from Images Using a Mixture of Convolutional Neural Networks
With rapid development of the Internet, web contents become huge. Most of the
websites are publicly available, and anyone can access the contents from
anywhere such as workplace, home and even schools. Nevertheless, not all the
web contents are appropriate for all users, especially children. An example of
these contents is pornography images which should be restricted to certain age
group. Besides, these images are not safe for work (NSFW) in which employees
should not be seen accessing such contents during work. Recently, convolutional
neural networks have been successfully applied to many computer vision
problems. Inspired by these successes, we propose a mixture of convolutional
neural networks for adult content recognition. Unlike other works, our method
is formulated on a weighted sum of multiple deep neural network models. The
weights of each CNN models are expressed as a linear regression problem learned
using Ordinary Least Squares (OLS). Experimental results demonstrate that the
proposed model outperforms both single CNN model and the average sum of CNN
models in adult content recognition.Comment: To be published in LNEE, Code: github.com/mundher/NSF
Surface reconstruction, premelting, and collapse of open-cell nanoporous Cu via thermal annealing
We systematic investigate the collapse of a set of open-cell nanoporous Cu
(np-Cu) with the same porosity and shapes, but different specific surface area,
during thermal annealing, via performing large-scale molecular dynamics
simulations. Surface premelting is dominated in their collapses, and surface
premelting temperatures reduce linearly with the increase of specific surface
area. The collapse mechanisms are different for np-Cu with different specific
surface area. If the specific surface area less than a critical value (
2.38 nm), direct surface premelting, giving rise to the transition of
ligaments from solid to liquid states, is the cause to facilitate falling-down
of np-Cu during thermal annealing. While surface premelting and following
recrystallization, accelerating the sloughing of ligaments and annihilation of
pores, is the other mechanism, as exceeding the critical specific surface area.
The recrystallization occurs at the temperatures below supercooling, where
liquid is instable and instantaneous. Thermal-induced surface reconstruction
prompts surface premelting via facilitating local "disordering" and "chaotic"
at the surface, which are the preferred sites for surface premelting
Emergence of intrinsic superconductivity below 1.178 K in the topologically non-trivial semimetal state of CaSn3
Topological materials which are also superconducting are of great current
interest, since they may exhibit a non-trivial topologically-mediated
superconducting phase. Although there have been many reports of pressure-tuned
or chemical-doping-induced superconductivity in a variety of topological
materials, there have been few examples of intrinsic, ambient pressure
superconductivity in a topological system having a stoichiometric composition.
Here, we report that the pure intermetallic CaSn3 not only exhibits topological
fermion properties but also has a superconducting phase at 1.178 K under
ambient pressure. The topological fermion properties, including the nearly zero
quasi-particle mass and the non-trivial Berry phase accumulated in cyclotron
motions, were revealed from the de Haas-van Alphen (dHvA) quantum oscillation
studies of this material. Although CaSn3 was previously reported to be
superconducting at 4.2K, our studies show that the superconductivity at 4.2K is
extrinsic and caused by Sn on the degraded surface, whereas its intrinsic bulk
superconducting transition occurs at 1.178 K. These findings make CaSn3 a
promising candidate for exploring new exotic states arising from the interplay
between non-trivial band topology and superconductivity, e.g. topological
superconductivityComment: 20 pages,4 figure
- …
