27,272 research outputs found
Unconventional Superconductivity and Density Waves in Twisted Bilayer Graphene
We study electronic ordering instabilities of twisted bilayer graphene with
electrons per supercell, where correlated insulator state and
superconductivity are recently observed. Motivated by the Fermi surface nesting
and the proximity to Van Hove singularity, we introduce a hot-spot model to
study the effect of various electron interactions systematically. Using
renormalization group method, we find /-wave superconductivity and
charge/spin density wave emerge as the two types of leading instabilities
driven by Coulomb repulsion. The density wave state has a gapped energy
spectrum at and yields a single doubly-degenerate pocket upon doping to
. The intertwinement of density wave and superconductivity and the
quasiparticle spectrum in the density wave state are consistent with
experimental observations.Comment: 15 pages, 12 figures; updated discussion and analysis on density wave
state
Zeeman-Induced Gapless Superconductivity with Partial Fermi Surface
We show that an in-plane magnetic field can drive two-dimensional
spin-orbit-coupled systems under superconducting proximity effect into a
gapless phase where parts of the normal state Fermi surface are gapped, and the
ungapped parts are reconstructed into a small Fermi surface of Bogoliubov
quasiparticles at zero energy. Charge distribution, spin texture, and density
of states of such "partial Fermi surface" are discussed. Material platforms for
its physical realization are proposed.Comment: 5 pages, 2 figure
Non-Fermi liquid states in the pressurized system: two critical points
In the archetypal strongly correlated electron superconductor CeCuSi
and its Ge-substituted alloys CeCu(SiGe) two quantum
phase transitions -- one magnetic and one of so far unknown origin -- can be
crossed as a function of pressure \cite{Yuan 2003a}. We examine the associated
anomalous normal state by detailed measurements of the low temperature
resistivity () power law exponent . At the lower critical point
(at , ) depends strongly on Ge
concentration and thereby on disorder level, consistent with a
Hlubina-Rice-Rosch scenario of critical scattering off antiferromagnetic
fluctuations. By contrast, is independent of at the upper quantum
phase transition (at , ), suggesting critical
scattering from local or Q=0 modes, in agreement with a density/valence
fluctuation approach.Comment: 4 pages, including 4 figures. New results added. Significant changes
on the text and Fig.
Possible Topological Superconducting Phases of MoS
Molybdenum disulphide (MoS) has attracted much interest in recent years
due to its potential applications in a new generation of electronic devices.
Recently, it was shown that thin films of MoS can become superconducting
with a highest of 10K when the material is heavily gated to the
conducting regime. In this work, using the group theoretical approach, we
determine the possible pairing symmetries of heavily gated MoS. Depending
on the electron-electron interactions, the material can support an exotic
spin-singlet -wave-like, an exotic spin-triplet s-wave-like and an
conventional spin-triplet -wave pairing phases. Importantly, the exotic
spin-singlet -wave phase is a topological superconducting phase which
breaks time-reversal symmetry spontaneously and possesses chiral Majorana edge
states.Comment: 5 pages, 4 figures. References added. Comments are welcom
The magnetoresistance and Hall effect in CeFeAsO: a high magnetic field study
The longitudinal electrical resistivity and the transverse Hall resistivity
of CeFeAsO are simultaneously measured up to a magnetic field of 45T using the
facilities of pulsed magnetic field at Los Alamos. Distinct behaviour is
observed in both the magnetoresistance Rxx({\mu}0H) and the Hall resistance
Rxy({\mu}0H) while crossing the structural phase transition at Ts \approx 150K.
At temperatures above Ts, little magnetoresistance is observed and the Hall
resistivity follows linear field dependence. Upon cooling down the system below
Ts, large magnetoresistance develops and the Hall resistivity deviates from the
linear field dependence. Furthermore, we found that the transition at Ts is
extremely robust against the external magnetic field. We argue that the
magnetic state in CeFeAsO is unlikely a conventional type of spin-density-wave
(SDW).Comment: 4 pages, 3 figures SCES2010, To appear in J. Phys.: Conf. Ser. for
SCES201
An Imaging and Spectral Study of Ten X-Ray Filaments around the Galactic Center
We report the detection of 10 new X-ray filaments using the data from the
{\sl Chandra} X-ray satellite for the inner ( parsec)
around the Galactic center (GC). All these X-ray filaments are characterized by
non-thermal energy spectra, and most of them have point-like features at their
heads that point inward. Fitted with the simple absorbed power-law model, the
measured X-ray flux from an individual filament in the 2-10 keV band is to ergs cm s and the
absorption-corrected X-ray luminosity is ergs s
at a presumed distance of 8 kpc to the GC. We speculate the origin(s) of these
filaments by morphologies and by comparing their X-ray images with the
corresponding radio and infrared images. On the basis of combined information
available, we suspect that these X-ray filaments might be pulsar wind nebulae
(PWNe) associated with pulsars of age yr. The fact
that most of the filament tails point outward may further suggest a high
velocity wind blowing away form the GC.Comment: 29 pages with 7 figures and 3 pages included. Accepted to Ap
- …
