102,234 research outputs found

    Acyclic orientations on the Sierpinski gasket

    Full text link
    We study the number of acyclic orientations on the generalized two-dimensional Sierpinski gasket SG2,b(n)SG_{2,b}(n) at stage nn with bb equal to two and three, and determine the asymptotic behaviors. We also derive upper bounds for the asymptotic growth constants for SG2,bSG_{2,b} and dd-dimensional Sierpinski gasket SGdSG_d.Comment: 20 pages, 8 figures and 6 table

    Unitary Fermi Gas in a Harmonic Trap

    Get PDF
    We present an {\it ab initio} calculation of small numbers of trapped, strongly interacting fermions using the Green's Function Monte Carlo method (GFMC). The ground state energy, density profile and pairing gap are calculated for particle numbers N=222N = 2 \sim 22 using the parameter-free "unitary" interaction. Trial wave functions are taken of the form of correlated pairs in a harmonic oscillator basis. We find that the lowest energies are obtained with a minimum explicit pair correlation beyond that needed to exploit the degeneracy of oscillator states. We find that energies can be well fitted by the expression aTFETF+Δmod(N,2)a_{TF} E_{TF} + \Delta {\rm mod}(N,2) where ETFE_{TF} is the Thomas-Fermi energy of a noninteracting gas in the trap and Δ\Delta is a pairing gap. There is no evidence of a shell correction energy in the systematics, but the density distributions show pronounced shell effects. We find the value Δ=0.7±0.2ω\Delta= 0.7\pm 0.2\omega for the pairing gap. This is smaller than the value found for the uniform gas at a density corresponding to the central density of the trapped gas.Comment: 2 figures, 2 table

    A systematic study of Rayleigh-Brillouin scattering in air, N2 and O2 gases

    Full text link
    Spontaneous Rayleigh-Brillouin scattering experiments in air, N2 and O2 have been performed for a wide range of temperatures and pressures at a wavelength of 403 nm and at a 90 degrees scattering angle. Measurements of the Rayleigh-Brillouin spectral scattering profile were conducted at high signal-to-noise ratio for all three species, yielding high-quality spectra unambiguously showing the small differences between scattering in air, and its constituents N2 and O2. Comparison of the experimental spectra with calculations using the Tenti S6 model, developed in 1970s based on linearized kinetic equations for molecular gases, demonstrates that this model is valid to high accuracy. After previous measurements performed at 366 nm, the Tenti S6 model is here verified for a second wavelength of 403 nm. Values for the bulk viscosity for the gases are derived by optimizing the model to the measurements. It is verified that the bulk viscosity parameters obtained from previous experiments at 366 nm, are valid for wavelengths of 403 nm. Also for air, which is treated as a single-component gas with effective gas transport coefficients, the Tenti S6 treatment is validated for 403 nm as for the previously used wavelength of 366 nm, yielding an accurate model description of the scattering profiles for a range of temperatures and pressures, including those of relevance for atmospheric studies. It is concluded that the Tenti S6 model, further verified in the present study, is applicable to LIDAR applications for exploring the wind velocity and the temperature profile distributions of the Earth's atmosphere. Based on the present findings, predictions can be made on the spectral profiles for a typical LIDAR backscatter geometry, which deviate by some 7 percent from purely Gaussian profiles at realistic sub-atmospheric pressures occurring at 3-5 km altitude in the Earth's atmosphere

    Isolated Galaxies versus Interacting Pairs with MaNGA

    Full text link
    We present preliminary results of the spectral analysis on the radial distributions of the star formation history in both, a galaxy merger and a spiral isolated galaxy observed with MaNGA. We find that the central part of the isolated galaxy is composed by older stellar population (\sim2 Gyr) than in the outskirts (\sim7 Gyr). Also, the time-scale is gradually larger from 1 Gyr in the inner part to 3 Gyr in the outer regions of the galaxy. In the case of the merger, the stellar population in the central region is older than in the tails, presenting a longer time-scale in comparison to central part in the isolated galaxy. Our results are in agreement with a scenario where spiral galaxies are built from inside-out. In the case of the merger, we find evidence that interactions enhance star formation in the central part of the galaxy.Comment: 7 pages, 2 figures. Proceedings of the EWASS-2015 special session Sp3, accepted for publication in Special Issue "3D View on Interacting and Post-Interacting Galaxies from Clusters to Voids" of open access journal "Galaxies

    A flowing plasma model to describe drift waves in a cylindrical helicon discharge

    Full text link
    A two-fluid model developed originally to describe wave oscillations in the vacuum arc centrifuge, a cylindrical, rapidly rotating, low temperature and confined plasma column, is applied to interpret plasma oscillations in a RF generated linear magnetised plasma (WOMBAT), with similar density and field strength. Compared to typical centrifuge plasmas, WOMBAT plasmas have slower normalised rotation frequency, lower temperature and lower axial velocity. Despite these differences, the two-fluid model provides a consistent description of the WOMBAT plasma configuration and yields qualitative agreement between measured and predicted wave oscillation frequencies with axial field strength. In addition, the radial profile of the density perturbation predicted by this model is consistent with the data. Parameter scans show that the dispersion curve is sensitive to the axial field strength and the electron temperature, and the dependence of oscillation frequency with electron temperature matches the experiment. These results consolidate earlier claims that the density and floating potential oscillations are a resistive drift mode, driven by the density gradient. To our knowledge, this is the first detailed physics model of flowing plasmas in the diffusion region away from the RF source. Possible extensions to the model, including temperature non-uniformity and magnetic field oscillations, are also discussed

    New constraints on a light CP-odd Higgs boson and related NMSSM Ideal Higgs Scenarios

    Get PDF
    Recent BaBar limits on \br(\Upsilon(3S)\to \gam a\to \gam \tau^+\tau^-) and \br(\Upsilon(3S)\to \gam a\to \gam \mu^+\mu^-) provide increased constraints on the a b\anti b coupling of a CP-odd Higgs boson, aa, with ma<MΥ(3S)m_a<M_{\Upsilon(3S)}. We extract these limits from the BaBar data and compare to the limits previously obtained using other data sets, especially the CLEO-III \br(\Upsilon(1S)\to \gam\to\tau^+\tau^-) limits. Comparisons are made to predictions in the context of "ideal"-Higgs NMSSM scenarios, in which the lightest CP-even Higgs boson, h1h_1, can have mass below 105\gev (as preferred by precision electroweak data) and yet can escape old LEP limits by virtue of decays to a pair of the lightest CP-odd Higgs bosons, h1a1a1h_1\to a_1a_1, with ma1<2mBm_{a_1}<2m_B. Most such scenarios with ma1<2mτm_{a_1}<2m_\tau are eliminated, but the bulk of the m_{a_1}>7.5\gev scenarios, which are theoretically the most favored, survive. We also outline the impact of the new ALEPH LEP results in the \epem\to Z+4\tau channel. For tanβ3\tan\beta\geq 3, only NMSSM ideal Higgs scenarios with m_{h_1}\gsim 98\gev and ma1m_{a_1} close to 2mB2m_B satisfy the ALEPH limits. For \tan\beta\lsim 2, the ALEPH limits are easily satisfied for the most theoretically preferred NMSSM scenarios, which are those with ma1m_{a_1} close to 2mB2m_B and m_{h_1}\sim 90\gev-100\gev.Comment: 24 pages, 25 figures, paper updated to incorporate final ALEPH limits in Z+4\tau channel
    corecore