325,149 research outputs found

    Fermion bag solutions to some sign problems in four-fermion field theories

    Full text link
    Lattice four-fermion models containing NN flavors of staggered fermions, that are invariant under Z2Z_2 and U(1) chiral symmetries, are known to suffer from sign problems when formulated using the auxiliary field approach. Although these problems have been ignored in previous studies, they can be severe. Here we show that the sign problems disappear when the models are formulated in the fermion bag approach, allowing us to solve them rigorously for the first time.Comment: references adde

    Joint Dynamic Radio Resource Allocation and Mobility Load Balancing in 3GPP LTE Multi-Cell Network

    Get PDF
    Load imbalance, together with inefficient utilization of system resource, constitute major factors responsible for poor overall performance in Long Term Evolution (LTE) network. In this paper, a novel scheme of joint dynamic resource allocation and load balancing is proposed to achieve a balanced performance improvement in 3rd Generation Partnership Project (3GPP) LTE Self-Organizing Networks (SON). The new method which aims at maximizing network resource efficiency subject to inter-cell interference and intra-cell resource constraints is implemented in two steps. In the first step, an efficient resource allocation, including user scheduling and power assignment, is conducted in a distributed manner to serve as many users in the whole network as possible. In the second step, based on the resource allocation scheme, the optimization objective namely network resource efficiency can be calculated and load balancing is implemented by switching the user that can maximize the objective function. Lagrange Multipliers method and heuristic algorithm are used to resolve the formulated optimization problem. Simulation results show that our algorithm achieves better performance in terms of user throughput, fairness, load balancing index and unsatisfied user number compared with the traditional approach which takes resource allocation and load balancing into account, respectively

    Internet-induced marketing techniques: Critical factors in viral marketing campaigns

    Get PDF
    The rapid diffusion of the Internet and the emergence of various social constructs facilitated by Internet technologies are changing the drivers that define how marketing techniques are developed and refined. This paper identifies critical factors for viral marketing, an Internet-based ‘word-of-mouth’ marketing technique. Based on existing knowledge, five types of viral marketing factors that may critically influence the success of viral marketing campaigns are identified. These factors are the overall structure of the campaign, the characteristics of the product or service, the content of the message, the characteristics of the diffusion and, the peer-to-peer information conduit. The paper discusses three examples of viral marketing campaigns and identifies the specific factors in each case that influence its success. The paper concludes with a viral marketing typology differentiating between viral marketing communications, unintended viral marketing and commercial viral marketing. This is still a rapidly evolving area and further research is clearly needed to monitor new developments and make sense of the radical changes these developments bring to the market

    Modules-at-infinity for quantum vertex algebras

    Full text link
    This is a sequel to \cite{li-qva1} and \cite{li-qva2} in a series to study vertex algebra-like structures arising from various algebras such as quantum affine algebras and Yangians. In this paper, we study two versions of the double Yangian DY(sl2)DY_{\hbar}(sl_{2}), denoted by DYq(sl2)DY_{q}(sl_{2}) and DYq(sl2)DY_{q}^{\infty}(sl_{2}) with qq a nonzero complex number. For each nonzero complex number qq, we construct a quantum vertex algebra VqV_{q} and prove that every DYq(sl2)DY_{q}(sl_{2})-module is naturally a VqV_{q}-module. We also show that DYq(sl2)DY_{q}^{\infty}(sl_{2})-modules are what we call VqV_{q}-modules-at-infinity. To achieve this goal, we study what we call §\S-local subsets and quasi-local subsets of \Hom (W,W((x^{-1}))) for any vector space WW, and we prove that any §\S-local subset generates a (weak) quantum vertex algebra and that any quasi-local subset generates a vertex algebra with WW as a (left) quasi module-at-infinity. Using this result we associate the Lie algebra of pseudo-differential operators on the circle with vertex algebras in terms of quasi modules-at-infinity.Comment: Latex, 48 page

    Experimental evidence for new symmetry axis of electromagnetic beams

    Full text link
    The new symmetry axis of a well-behaved electromagnetic beam advanced in paper Physical Review A 78, 063831 (2008) is not purely a mathematical concept. The experimental result reported by Hosten and Kwiat in paper Science 319, 787 (2008) is shown to demonstrate the existence of this symmetry axis that is neither perpendicular nor parallel to the propagation axis.Comment: 10 pages and 3 figure

    Domain Wall and Periodic Solutions of Coupled phi4 Models in an External Field

    Full text link
    Coupled double well (phi4) one-dimensional potentials abound in both condensed matter physics and field theory. Here we provide an exhaustive set of exact periodic solutions of a coupled ϕ4\phi^4 model in an external field in terms of elliptic functions (domain wall arrays) and obtain single domain wall solutions in specific limits. We also calculate the energy and interaction between solitons for various solutions. Both topological and nontopological (e.g. some pulse-like solutions in the presence of a conjugate field) domain walls are obtained. We relate some of these solutions to the recently observed magnetic domain walls in certain multiferroic materials and also in the field theory context wherever possible. Discrete analogs of these coupled models, relevant for structural transitions on a lattice, are also considered.Comment: 35 pages, no figures (J. Math. Phys. 2006

    Updated Global 3+1 Analysis of Short-BaseLine Neutrino Oscillations

    Get PDF
    We present the results of an updated fit of short-baseline neutrino oscillation data in the framework of 3+1 active-sterile neutrino mixing. We first consider νe\nu_e and νˉe\bar\nu_e disappearance in the light of the Gallium and reactor anomalies. We discuss the implications of the recent measurement of the reactor νˉe\bar\nu_e spectrum in the NEOS experiment, which shifts the allowed regions of the parameter space towards smaller values of Ue42|U_{e4}|^2. The beta-decay constraints allow us to limit the oscillation length between about 2 cm and 7 m at 3σ3\sigma for neutrinos with an energy of 1 MeV. We then consider the global fit of the data in the light of the LSND anomaly, taking into account the constraints from νe\nu_e and νμ\nu_\mu disappearance experiments, including the recent data of the MINOS and IceCube experiments. The combination of the NEOS constraints on Ue42|U_{e4}|^2 and the MINOS and IceCube constraints on Uμ42|U_{\mu4}|^2 lead to an unacceptable appearance-disappearance tension which becomes tolerable only in a pragmatic fit which neglects the MiniBooNE low-energy anomaly. The minimization of the global χ2\chi^2 in the space of the four mixing parameters Δm412\Delta{m}^2_{41}, Ue42|U_{e4}|^2, Uμ42|U_{\mu4}|^2, and Uτ42|U_{\tau4}|^2 leads to three allowed regions with narrow Δm412\Delta{m}^{2}_{41} widths at Δm4121.7 \Delta m^2_{41} \approx 1.7 (best-fit), 1.3 (at 2σ2\sigma), 2.4 (at 3σ3\sigma) eV2^2. The restrictions of the allowed regions of the mixing parameters with respect to our previous global fits are mainly due to the NEOS constraints. We present a comparison of the allowed regions of the mixing parameters with the sensitivities of ongoing experiments, which show that it is likely that these experiments will determine in a definitive way if the reactor, Gallium and LSND anomalies are due to active-sterile neutrino oscillations or not.Comment: 39 pages; improved treatment of the reactor flux uncertainties and other minor correction

    Temperature dependence of thermal conductivity in 1D nonlinear lattices

    Full text link
    We examine the temperature dependence of thermal conductivity of one dimensional nonlinear (anharmonic) lattices with and without on-site potential. It is found from computer simulation that the heat conductivity depends on temperature via the strength of nonlinearity. Based on this correlation, we make a conjecture in the effective phonon theory that the mean-free-path of the effective phonon is inversely proportional to the strength of nonlinearity. We demonstrate analytically and numerically that the temperature behavior of the heat conductivity κ1/T\kappa\propto1/T is not universal for 1D harmonic lattices with a small nonlinear perturbation. The computer simulations of temperature dependence of heat conductivity in general 1D nonlinear lattices are in good agreements with our theoretic predictions. Possible experimental test is discussed.Comment: 6 pages and 2 figures. Accepted for publication in Europhys. Let
    corecore