7,842 research outputs found
Sensitive Chemical Compass Assisted by Quantum Criticality
The radical-pair-based chemical reaction could be used by birds for the
navigation via the geomagnetic direction. An inherent physical mechanism is
that the quantum coherent transition from a singlet state to triplet states of
the radical pair could response to the weak magnetic field and be sensitive to
the direction of such a field and then results in different photopigments in
the avian eyes to be sensed. Here, we propose a quantum bionic setup for the
ultra-sensitive probe of a weak magnetic field based on the quantum phase
transition of the environments of the two electrons in the radical pair. We
prove that the yield of the chemical products via the recombination from the
singlet state is determined by the Loschmidt echo of the environments with
interacting nuclear spins. Thus quantum criticality of environments could
enhance the sensitivity of the detection of the weak magnetic field.Comment: 4 pages, 3 figure
Trapped interacting two-component bosons
In this paper we solve one dimensional trapped SU(2) bosons with repulsive
-function interaction by means of Bethe-ansatz method. The features of
ground state and low-lying excited states are studied by numerical and analytic
methods. We show that the ground state is an isospin "ferromagnetic" state
which differs from spin-1/2 fermions system. There exist three quasi-particles
in the excitation spectra, and both holon-antiholon and holon-isospinon
excitations are gapless for large systems. The thermodynamics equilibrium of
the system at finite temperature is studied by thermodynamic Bethe ansatz. The
thermodynamic quantities, such as specific heat etc. are obtained for the case
of strong coupling limit.Comment: 15 pages, 9 figure
Finite-Temperature Scaling of Magnetic Susceptibility and Geometric Phase in the XY Spin Chain
We study the magnetic susceptibility of 1D quantum XY model, and show that
when the temperature approaches zero, the magnetic susceptibility exhibits the
finite-temperature scaling behavior. This scaling behavior of the magnetic
susceptibility in 1D quantum XY model, due to the quantum-classical mapping,
can be easily experimentally tested. Furthermore, the universality in the
critical properties of the magnetic susceptibility in quantum XY model is
verified. Our study also reveals the close relation between the magnetic
susceptibility and the geometric phase in some spin systems, where the quantum
phase transitions are driven by an external magnetic field.Comment: 6 pages, 4 figures, get accepted for publication by J. Phys. A: Math.
Theo
Multi-Player and Multi-Choice Quantum Game
We investigate a multi-player and multi-choice quantum game. We start from
two-player and two-choice game and the result is better than its classical
version. Then we extend it to N-player and N-choice cases. In the quantum
domain, we provide a strategy with which players can always avoid the worst
outcome. Also, by changing the value of the parameter of the initial state, the
probabilities for players to obtain the best payoff will be much higher that in
its classical version.Comment: 4 pages, 1 figur
Dynamics of lattice spins as a model of arrhythmia
We consider evolution of initial disturbances in spatially extended systems
with autonomous rhythmic activity, such as the heart. We consider the case when
the activity is stable with respect to very smooth (changing little across the
medium) disturbances and construct lattice models for description of
not-so-smooth disturbances, in particular, topological defects; these models
are modifications of the diffusive XY model. We find that when the activity on
each lattice site is very rigid in maintaining its form, the topological
defects - vortices or spirals - nucleate a transition to a disordered,
turbulent state.Comment: 17 pages, revtex, 3 figure
Crystalline Assemblies and Densest Packings of a Family of Truncated Tetrahedra and the Role of Directional Entropic Forces
Polyhedra and their arrangements have intrigued humankind since the ancient
Greeks and are today important motifs in condensed matter, with application to
many classes of liquids and solids. Yet, little is known about the
thermodynamically stable phases of polyhedrally-shaped building blocks, such as
faceted nanoparticles and colloids. Although hard particles are known to
organize due to entropy alone, and some unusual phases are reported in the
literature, the role of entropic forces in connection with polyhedral shape is
not well understood. Here, we study thermodynamic self-assembly of a family of
truncated tetrahedra and report several atomic crystal isostructures, including
diamond, {\beta}-tin, and high- pressure lithium, as the polyhedron shape
varies from tetrahedral to octahedral. We compare our findings with the densest
packings of the truncated tetrahedron family obtained by numerical compression
and report a new space filling polyhedron, which has been overlooked in
previous searches. Interestingly, the self-assembled structures differ from the
densest packings. We show that the self-assembled crystal structures can be
understood as a tendency for polyhedra to maximize face-to-face alignment,
which can be generalized as directional entropic forces.Comment: Article + supplementary information. 23 pages, 10 figures, 2 table
Decay of Loschmidt Echo Enhanced by Quantum Criticality
We study the transition of a quantum system from a pure state to a mixed
one, which is induced by the quantum criticality of the surrounding system
coupled to it. To characterize this transition quantitatively, we carefully
examine the behavior of the Loschmidt echo (LE) of modelled as an Ising
model in a transverse field, which behaves as a measuring apparatus in quantum
measurement. It is found that the quantum critical behavior of strongly
affects its capability of enhancing the decay of LE: near the critical value of
the transverse field entailing the happening of quantum phase transition, the
off-diagonal elements of the reduced density matrix describing vanish
sharply.Comment: 4 pages, 3 figure
Loss of PLA2G6 leads to elevated mitochondrial lipid peroxidation and mitochondrial dysfunction
© 2015 The Author.The PLA2G6 gene encodes a group VIA calcium-independent phospholipase A2 beta enzyme that selectively hydrolyses glycerophospholipids to release free fatty acids. Mutations in PLA2G6 have been associated with disorders such as infantile neuroaxonal dystrophy, neurodegeneration with brain iron accumulation type II and Karak syndrome. More recently, PLA2G6 was identified as the causative gene in a subgroup of patients with autosomal recessive early-onset dystonia-Parkinsonism. Neuropathological examination revealed widespread Lewy body pathology and the accumulation of hyperphosphorylated tau, supporting a link between PLA2G6 mutations and Parkinsonian disorders. Here we show that knockout of the Drosophila homologue of the PLA2G6 gene, iPLA2-VIA, results in reduced survival, locomotor deficits and organismal hypersensitivity to oxidative stress. Furthermore, we demonstrate that loss of iPLA2-VIA function leads to a number of mitochondrial abnormalities, including mitochondrial respiratory chain dysfunction, reduced ATP synthesis and abnormal mitochondrial morphology. Moreover, we show that loss of iPLA2-VIA is strongly associated with increased lipid peroxidation levels. We confirmed our findings using cultured fibroblasts taken from two patients with mutations in the PLA2G6 gene. Similar abnormalities were seen including elevated mitochondrial lipid peroxidation and mitochondrial membrane defects, as well as raised levels of cytoplasmic and mitochondrial reactive oxygen species. Finally, we demonstrated that deuterated polyunsaturated fatty acids, which inhibit lipid peroxidation, were able to partially rescue the locomotor abnormalities seen in aged flies lacking iPLA2-VIA gene function, and restore mitochondrial membrane potential in fibroblasts from patients with PLA2G6 mutations. Taken together, our findings demonstrate that loss of normal PLA2G6 gene activity leads to lipid peroxidation, mitochondrial dysfunction and subsequent mitochondrial membrane abnormalities. Furthermore we show that the iPLA2-VIA knockout fly model provides a useful platform for the further study of PLA2G6-associated neurodegeneration
- …
