89,529 research outputs found

    On the CR transversality of holomorphic maps into hyperquadrics

    Full text link
    Let MM_\ell be a smooth Levi-nondegenerate hypersurface of signature \ell in Cn\mathbf C^n with n3 n\ge 3, and write HNH_\ell^N for the standard hyperquadric of the same signature in CN\mathbf C^N with Nn<n12N-n< \frac{n-1}{2}. Let FF be a holomorphic map sending MM_\ell into HNH_\ell^N. Assume FF does not send a neighborhood of MM_\ell in Cn\mathbf C^n into HNH_\ell^N. We show that FF is necessarily CR transversal to MM_\ell at any point. Equivalently, we show that FF is a local CR embedding from MM_\ell into HNH_\ell^N.Comment: To appear in Abel Symposia, dedicated to Professor Yum-Tong Siu on the occasion of his 70th birthda

    A Two-Component Explosion Model for the Giant Flare and Radio Afterglow from SGR1806-20

    Full text link
    The brightest giant flare from the soft γ\gamma-ray repeater (SGR) 1806-20 was detected on 2004 December 27. The isotropic-equivalent energy release of this burst is at least one order of magnitude more energetic than those of the two other SGR giant flares. Starting from about one week after the burst, a very bright (80\sim 80 mJy), fading radio afterglow was detected. Follow-up observations revealed the multi-frequency light curves of the afterglow and the temporal evolution of the source size. Here we show that these observations can be understood in a two-component explosion model. In this model, one component is a relativistic collimated outflow responsible for the initial giant flare and the early afterglow, and another component is a subrelativistic wider outflow responsible for the late afterglow. We also discuss triggering mechanisms of these two components within the framework of the magnetar model.Comment: 7 pages including 3 figures, emulateapj5.sty, accepted for publication in ApJ Letter

    Fermi gas in harmonic oscillator potentials

    Full text link
    Assuming the validity of grand canonical statistics, we study the properties of a spin-polarized Fermi gas in harmonic traps. Universal forms of Fermi temperature TFT_F, internal energy UU and the specific heat per particle of the trapped Fermi gas are calculated as a {\it function} of particle number, and the results compared with those of infinite number particles.Comment: 8 pages, 1 figure, LATE

    Optical Flashes and Very Early Afterglows in Wind Environments

    Full text link
    The interaction of a relativistic fireball with its ambient medium is described through two shocks: a reverse shock that propagates into the fireball, and a forward shock that propagates into the medium. The observed optical flash of GRB 990123 has been considered to be the emission from such a reverse shock. The observational properties of afterglows suggest that the progenitors of some GRBs may be massive stars and their surrounding media may be stellar winds. We here study very early afterglows from the reverse and forward shocks in winds. An optical flash mainly arises from the relativistic reverse shock while a radio flare is produced by the forward shock. The peak flux densities of optical flashes are larger than 1 Jy for typical parameters, if we do not take into account some appropriate dust obscuration along the line of sight. The radio flare always has a long lasting constant flux, which will not be covered up by interstellar scintillation. The non-detections of optical flashes brighter than about 9th magnitude may constrain the GRBs isotropic energies to be no more than a few 105210^{52} ergs and wind intensities to be relatively weak.Comment: 21 pages, 6 figures, accepted by MNRAS on March 7, 200

    Signature of a spin-up magnetar from multi-band afterglow rebrightening of GRB 100814A

    Full text link
    In recent years, more and more gamma-ray bursts with late rebrightenings in multi-band afterglows unveil the late-time activities of the central engines. GRB 100814A is a special one among the well-sampled events, with complex temporal and spectral evolution. The single power-law shallow decay index of the optical light curve observed by GROND between 640 s and 10 ks is αopt=0.57±0.02\alpha_{\rm opt} = 0.57 \pm 0.02, which apparently conflicts with the simple external shock model expectation. Especially, there is a remarkable rebrightening in the optical to near infrared bands at late time, challenging the external shock model with synchrotron emission coming from the interaction of the blast wave with the surrounding interstellar medium. In this paper, we invoke a magnetar with spin evolution to explain the complex multi-band afterglow emission of GRB 100814A. The initial shallow decay phase in optical bands and the plateau in X-ray can be explained as due to energy injection from a spin-down magnetar. At late time, with the falling of materials from the fall-back disk onto the central object of the burster, angular momentum of the accreted materials is transferred to the magnetar, which leads to a spin-up process. As a result, the magnetic dipole radiation luminosity will increase, resulting in the significant rebrightening of the optical afterglow. It is shown that the observed multi-band afterglow emission can be well reproduced by the model.Comment: 14 pages, 2 figures, accepted by The Astrophysical Journa

    CRLBs for Pilot-Aided Channel Estimation in OFDM System under Gaussian and Non-Gaussian Mixed Noise

    Get PDF
    The determination of Cramer-Rao lower bound (CRLB) as an optimality criterion for the problem of channel estimation in wireless communication is a very important issue. Several CRLBs on channel estimation have been derived for Gaussian noise. However, a practical channel is affected by not only Gaussian background noise but also non-Gaussian noise such as impulsive interference. This paper derives the deterministic and stochastic CRLBs for Gaussian and non-Gaussian mixed noise. Due to the use of the non-parametric kernel method to build the PDF of non-Gaussian noise, the proposed CRLBs are suitable for practical channel environments with various noise distributions
    corecore