271,948 research outputs found

    Matter Effects in Active-Sterile Solar Neutrino Oscillations

    Full text link
    The matter effects for solar neutrino oscillations are studied in a general scheme with an arbitrary number of sterile neutrinos, without any constraint on the mixing, assuming only a realistic hierarchy of neutrino squared-mass differences in which the smallest squared-mass difference is effective in solar neutrino oscillations. The validity of the analytic results are illustrated with a numerical solution of the evolution equation in three examples of the possible mixing matrix in the simplest case of four-neutrino mixing.Comment: 26 pages. Final version published in Phys. Rev. D80 (2009) 11300

    Captures of Hot and Warm Sterile Antineutrino Dark Matter on EC-decaying Ho-163 Nuclei

    Full text link
    Capturing low-energy electron antineutrinos on radioactive Ho-163 nuclei, which decay into Dy-163 via electron capture (EC), is a noteworthy opportunity to detect relic sterile antineutrinos. Such hypothetical particles are more or less implied by current experimental and cosmological data, and they might be a part of hot dark matter or a candidate for warm dark matter in the Universe. Using the isotope Ho-163 as a target and assuming reasonable active-sterile antineutrino mixing angles, we calculate the capture rate of relic electron antineutrinos against the corresponding EC-decay background in the presence of sterile antineutrinos at the sub-eV or keV mass scale. We show that the signature of hot or warm sterile antineutrino dark matter should in principle be observable, provided the target is big enough and the energy resolution is good enough.Comment: 16 pages, 6 figures, more discussions and references added. To appear in JCA

    X-ray and EUV spectroscopy of various astrophysical and laboratory plasmas -- Collisional, photoionization and charge-exchange plasmas

    Full text link
    Several laboratory facilities were used to benchmark theoretical spectral models those extensively used by astronomical communities. However there are still many differences between astrophysical environments and laboratory miniatures that can be archived. Here we setup a spectral analysis system for astrophysical and laboratory (SASAL) plasmas to make a bridge between them, and investigate the effects from non-thermal electrons, contribution from metastable level-population on level populations and charge stage distribution for coronal-like, photoionized, and geocoronal plasmas. Test applications to laboratory measurement (i.e. EBIT plasma) and astrophysical observation (i.e. Comet, Cygnus X-3) are presented. Time evolution of charge stage and level population are also explored for collisional and photoionized plasmas.Comment: 11 Figures, 3 Tables, Accepted by ApJ on Jan. 23, 2014. Astrophysical Journal 201

    Lattice gluodynamics at negative g^2

    Full text link
    We consider Wilson's SU(N) lattice gauge theory (without fermions) at negative values of beta= 2N/g^2 and for N=2 or 3. We show that in the limit beta -> -infinity, the path integral is dominated by configurations where links variables are set to a nontrivial element of the center on selected non intersecting lines. For N=2, these configurations can be characterized by a unique gauge invariant set of variables, while for N=3 a multiplicity growing with the volume as the number of configurations of an Ising model is observed. In general, there is a discontinuity in the average plaquette when g^2 changes its sign which prevents us from having a convergent series in g^2 for this quantity. For N=2, a change of variables relates the gauge invariant observables at positive and negative values of beta. For N=3, we derive an identity relating the observables at beta with those at beta rotated by +- 2pi/3 in the complex plane and show numerical evidence for a Ising like first order phase transition near beta=-22. We discuss the possibility of having lines of first order phase transitions ending at a second order phase transition in an extended bare parameter space.Comment: 7 pages, 7 figures, uses revtex, Eqs. 15-17 corrected, minor change

    Ground-state phases of the spin-1 J1J_{1}--J2J_{2} Heisenberg antiferromagnet on the honeycomb lattice

    Get PDF
    We study the zero-temperature quantum phase diagram of a spin-1 Heisenberg antiferromagnet on the honeycomb lattice with both nearest-neighbor exchange coupling J1>0J_{1}>0 and frustrating next-nearest-neighbor coupling J2κJ1>0J_{2} \equiv \kappa J_{1} > 0, using the coupled cluster method implemented to high orders of approximation, and based on model states with different forms of classical magnetic order. For each we calculate directly in the bulk thermodynamic limit both ground-state low-energy parameters (including the energy per spin, magnetic order parameter, spin stiffness coefficient, and zero-field uniform transverse magnetic susceptibility) and their generalized susceptibilities to various forms of valence-bond crystalline (VBC) order, as well as the energy gap to the lowest-lying spin-triplet excitation. In the range 0<κ<10 < \kappa < 1 we find evidence for four distinct phases. Two of these are quasiclassical phases with antiferromagnetic long-range order, one with 2-sublattice N\'{e}el order for κ<κc1=0.250(5)\kappa < \kappa_{c_{1}} = 0.250(5), and another with 4-sublattice N\'{e}el-II order for κ>κc2=0.340(5)\kappa > \kappa_{c_{2}} = 0.340(5). Two different paramagnetic phases are found to exist in the intermediate region. Over the range κc1<κ<κci=0.305(5)\kappa_{c_{1}} < \kappa < \kappa^{i}_{c} = 0.305(5) we find a gapless phase with no discernible magnetic order, which is a strong candidate for being a quantum spin liquid, while over the range κci<κ<κc2\kappa^{i}_{c} < \kappa < \kappa_{c_{2}} we find a gapped phase, which is most likely a lattice nematic with staggered dimer VBC order that breaks the lattice rotational symmetry

    Electron transport in interacting hybrid mesoscopic systems

    Full text link
    A unified theory for the current through a nanoscale region of interacting electrons connected to two leads which can be either ferromagnet or superconductor is presented, yielding Meir-Wingreen-type formulas when applied to specific circumstances. In such a formulation, the requirement of gauge invariance for the current is satisfied automatically. Moreover, one can judge unambiguously what quantities can be measured in the transport experiment

    Spin-gap study of the spin-12\frac{1}{2} J1J_{1}--J2J_{2} model on the triangular lattice

    Get PDF
    We use the coupled cluster method implemented at high orders of approximation to study the spin-12\frac{1}{2} J1J_{1}--J2J_{2} model on the triangular lattice with Heisenberg interactions between nearest-neighbour and next-nearest-neighbour pairs of spins, with coupling strengths J1>0J_{1}>0 and J2κJ1>0J_{2} \equiv \kappa J_{1} >0, respectively. In the window 0κ10 \leq \kappa \leq 1 we find that the 3-sublattice 120^{\circ} N\'{e}el-ordered and 2-sublattice 180^{\circ} stripe-ordered antiferromagnetic states form the stable ground-state phases in the regions κ<κ1c=0.060(10)\kappa < \kappa^{c}_{1} = 0.060(10) and κ>κ2c=0.165(5)\kappa > \kappa^{c}_{2} = 0.165(5), respectively. The spin-triplet gap is found to vanish over essentially the entire region κ1c<κ<κ2c\kappa^{c}_{1} < \kappa < \kappa^{c}_{2} of the intermediate phase
    corecore