24,782 research outputs found
Optical Control of a Quantum Rotor
The possibility to coherently control a quantum rotor is investigated
theoretically. The rotor is realized by an antiferromagnetic spin-1
Bose-Einstein condensate, trapped in the optical field of a Fabry-Perot
resonator. By tuning the pumping field of the resonator, coherent control over
the rotor is achieved. The technique is illustrated by the numerical simulation
of a protocol that transforms the rotor's ground state into a squeezed state.
The detection of the squeezed state via measurement of intensity-correlations
of the cavity field is proposed.Comment: 5 pages, 3 figure
Hot and crispy : CRISPR-Cas systems in the hyperthermophile Sulfolobus solfataricus
The CRISPR (clustered regularly interspaced short palindromic repeats) and Cas (CRISPR-associated) genes are widely spread in bacteria and archaea, representing an intracellular defence system against invading viruses and plasmids. In the system, fragments from foreign DNA are captured and integrated into the host genome at the CRISPR locus. The locus is transcribed and the resulting RNAs are processed by Cas6 into small crRNAs (CRISPR RNAs) that guide a variety of effector complexes to degrade the invading genetic elements. Many bacteria and archaea have one major type of effector complex. However, Sulfolobus solfataricus strain P2 has six CRISPR loci with two families of repeats, four cas6 genes and three different types of effector complex. These features make S. solfataricus an important model for studying CRISPR-Cas systems. In the present article, we review our current understanding of crRNA biogenesis and its effector complexes, subtype I-A and subtype III-B, in S. solfataricus. We also discuss the differences in terms of mechanisms between the subtype III-B systems in S. solfataricus and Pyrococcus furiosus.PostprintPeer reviewe
Supersolidity and phase diagram of softcore bosons in a triangular lattice
We study the softcore extended Bose Hubbard model in a two-dimensional
triangular lattice by using the quantum Monte Carlo methods. The ground state
phase diagram of the system exhibits a very fruitful structure. Except the Mott
insulating state, four kinds of solid states with respect to the commensurate
filling factors and are identified. Two of them (CDW II
and CDW III) are newly predicted. In incommensurate fillings, superfluid,
spuersolid as well as phase separation states are detected . As in the case for
the hardcore bosons, a supersolid phase exists in while it is
unstable towards the phase separation in . However, this instability
is refrained in due to the softening of the bosons and then a
supersolid phase survives.Comment: 4 pages, 5 figure
Targeting the Nrf2-Heme Oxygenase-1 Axis after Intracerebral Hemorrhage.
BACKGROUND: Injury to cells adjacent to an intracerebral hemorrhage (ICH) is likely mediated at least in part by toxins released from the hematoma that initiate complex and interacting injury cascades. Pharmacotherapies targeting a single toxin or pathway, even if consistently effective in controlled experimental models, have a high likelihood of failure in a variable clinical setting. Nuclear factor erythroid-2 related factor 2 (Nrf2) regulates the expression of heme oxygenase-1 (HO-1) and multiple other proteins with antioxidant and antiinflammatory effects, and may be a target of interest after ICH.
METHODS: Studies that tested the effect of HO and Nrf2 in models relevant to ICH are summarized, with an effort to reconcile conflicting data by consideration of methodological limitations.
RESULTS: In vitro studies demonstrated that Nrf2 activators rapidly increased HO-1 expression in astrocytes, and reduced their vulnerability to hemoglobin or hemin. Modulating HO-1 expression via genetic approaches yielded similar results. Systemic treatment with small molecule Nrf2 activators increased HO-1 expression in perivascular cells, particularly astrocytes. When tested in mouse or rat ICH models, Nrf2 activators were consistently protective, improving barrier function and attenuating edema, inflammation, neuronal loss and neurological deficits. These effects were mimicked by selective astrocyte HO-1 overexpression in transgenic mice.
CONCLUSION: Systemic treatment with Nrf2 activators after ICH is protective in rodents. Two compounds, dimethyl fumarate and hemin, are currently approved for treatment of multiple sclerosis and acute porphyria, respectively, and have acceptable safety profiles over years of clinical use. Further development of these drugs as ICH therapeutics seems warranted
Evaluation of a wave-vector-frequency-domain method for nonlinear wave propagation
A wave-vector-frequency-domain method is presented to describe one-directional forward or backward acoustic wave propagation in a nonlinear homogeneous medium. Starting from a frequency-domain representation of the second-order nonlinear acoustic wave equation, an implicit solution for
the nonlinear term is proposed by employing the Green’s function. Its approximation, which is more suitable for numerical implementation, is used. An error study is carried out to test the efficiency of the model by comparing the results with the Fubini solution. It is shown that the error grows as the propagation distance and step-size increase. However, for the specific case tested, even at a step size as large as one wavelength, sufficient accuracy for plane-wave propagation is observed. A two-dimensional steered transducer problem is explored to verify the nonlinear acoustic field directional independence
of the model. A three-dimensional single-element transducer problem is solved to verify the forward model by comparing it with an existing nonlinear wave propagation code. Finally, backward-projection behavior is examined. The sound field over a plane in an absorptive medium is backward
projected to the source and compared with the initial field, where good agreement is observed
The Power Spectrum, Bias Evolution, and the Spatial Three-Point Correlation Function
We calculate perturbatively the normalized spatial skewness, , and full
three-point correlation function (3PCF), , induced by gravitational
instability of Gaussian primordial fluctuations for a biased tracer-mass
distribution in flat and open cold-dark-matter (CDM) models. We take into
account the dependence on the shape and evolution of the CDM power spectrum,
and allow the bias to be nonlinear and/or evolving in time, using an extension
of Fry's (1996) bias-evolution model. We derive a scale-dependent,
leading-order correction to the standard perturbative expression for in
the case of nonlinear biasing, as defined for the unsmoothed galaxy and
dark-matter fields, and find that this correction becomes large when probing
positive effective power-spectrum indices. This term implies that the inferred
nonlinear-bias parameter, as usually defined in terms of the smoothed density
fields, might depend on the chosen smoothing scale. In general, we find that
the dependence of on the biasing scheme can substantially outweigh that
on the adopted cosmology. We demonstrate that the normalized 3PCF, , is an
ill-behaved quantity, and instead investigate , the variance-normalized
3PCF. The configuration dependence of shows similarly strong
sensitivities to the bias scheme as , but also exhibits significant
dependence on the form of the CDM power spectrum. Though the degeneracy of
with respect to the cosmological parameters and constant linear- and
nonlinear-bias parameters can be broken by the full configuration dependence of
, neither statistic can distinguish well between evolving and non-evolving
bias scenarios. We show that this can be resolved, in principle, by considering
the redshift dependence of .Comment: 41 pages, including 12 Figures. To appear in The Astrophysical
Journal, Vol. 521, #
The density profile of equilibrium and non-equilibrium dark matter halos
We study the diversity of the density profiles of dark matter halos based on
a large set of high-resolution cosmological simulations of 256^3 particles. The
cosmological models include four scale-free models and three representative
cold dark matter models. The simulations have good force resolution, and there
are about 400 massive halos with more than 10^4 particles within the virial
radius in each cosmological model. Our unbiased selection of all massive halos
enables to quantify how well the bulk of dark matter halos can be described by
the Navarro, Frenk & White (NFW) profile which was established for equilibrium
halos. We find that about seventy percent of the halos can be fitted by the NFW
profile with a fitting residual dvi_{max} less than 30% in Omega_0=1 universes.
This percentage is higher in lower density cosmological models. The rest of the
halos exhibits larger deviations from the NFW profile for more significant
internal substructures. There is a considerable amount of variation in the
density profile even for the halos which can be fitted by the NFW profile (i.e.
dvi_{max}<0.30). The distribution of the profile parameter, the concentration
, can be well described by a lognormal function with the mean value \bar c
slightly smaller (15%) than the NFW result and the dispersion \sigma_c in \ln c
about 0.25. The more virialized halos with dvi_{max}<0.15 have the mean value
\bar c in good agreement with the NFW result and a slightly smaller dispersion
\sigma_c (about 0.2). Our results can alleviate some of the conflicts found
recently between the theoretical NFW profile and observational results.
Implications for theoretical and observational studies of galaxy formation are
discussed.Comment: The final version accepted for publication in ApJ; one figure and one
paragraph added to demonstrate that all the conclusions of the first version
are solid to the resoltuion effects; 19 pages with 6 figure
- …
