2,991 research outputs found

    Spiking Chemical Sensor (SCS): A new platform for neuro-chemical sensing

    No full text
    Published versio

    Piezo stimulated currents in marble samples: precursory and concurrent-with-failure signals

    No full text
    International audienceThe Earth?s electric field transient variations are promising candidates of earthquake precursors. In order to study the physical mechanisms of such precursory signals, laboratory experiments of uniaxial compression were carried out. More specifically the behaviour of stressed marble samples from Penteli Mountain was investigated. The samples were subjected to a time-varying uniaxial compression at both variable and constant stress rates. During the first set of experiments weak electric currents were detected during pressure variations. Such Piezo Stimulated Currents (PSC) were detected while stress steps, both positive and negative were applied, the maximum stress never being greater than the elasticity limit. During the second set of experiments stress was applied at a constant rate starting from zero-stress and ending in fracture. In the region beyond the elastic limit a PSC was detected which after reaching a peak suffered a reversal in its polarity just before fracture. In a third set of experiments the same procedure was applied to previously structurally damaged samples taking care not to fracture them. In all cases the PSC followed the variation of stress and moreover it was observed that a linear relationship existed between the PSC maxima and the corresponding stress-rate maxima. The mechanism responsible for the described phenomena can be ascribed to the Moving Charged Dislocations model

    Pressure stimulated currents in rocks and their correlation with mechanical properties

    Get PDF
    The spontaneous electrification of marble samples was studied while they were subjected to uniaxial stress. The Pressure Stimulated Current (PSC) technique was applied to measure the charge released from compressed Dionysos marble samples, while they were subjected to cyclic loading. The experimental results demonstrate that, in the linear elastic region of the sample, no PSC is recorded, while beyond the stress limit (s>0.60), observable variations appear, which increase considerably in the vicinity of sample failure, reaching a maximum value just before the failure. The emitted current is reduced on each loading cycle and it has a reciprocal dependence to the normalized Young modulus. The MCD model, applied out of the vicinity of sample failure explains successfully the above findings. The existence of a "memory-like" behavior of the sample, could justify the weakness or absence of electrical earthquake precursors, during an aftershock sequence

    Wavelet analysis on pressure stimulated currents emitted by marble samples

    No full text
    International audienceThis paper presents a wavelet based method of analysis of experimentally recorded weak electric signals from marble specimens which have undergone successive abrupt step loadings. Experimental results verify the existence of "memory effects" in rocks, as far as the current emission is concerned, akin to the "Kaiser effect" in acoustic emissions, which accompany rock fracturing. Macroscopic signal processing shows similarities and differences between the currents emitted during successive loading and wavelet analysis can reveal significant differences between the currents of each loading cycle that contain valuable information for the micro and macro cracks in the specimen as well as information for the remaining strength of the material. Wavelets make possible the time localization of the energy of the electric signal emitted by stressed specimens and can serve as method to differentiate between compressed and uncompressed samples, or to determine the deformation level of specimens

    Test of CPT Symmetry and Quantum Mechanics with Experimental data from CPLEAR

    Full text link
    We use fits to recent published CPLEAR data on neutral kaon decays to π+π\pi^+\pi^- and πeν\pi e\nu to constrain the CPT--violation parameters appearing in a formulation of the neutral kaon system as an open quantum-mechanical system. The obtained upper limits of the CPT--violation parameters are approaching the range suggested by certain ideas concerning quantum gravity.Comment: 9 pages of uuencoded postscript (includes 3 figures
    corecore