58 research outputs found
Modular localization and Wigner particles
We propose a framework for the free field construction of algebras of local
observables which uses as an input the Bisognano-Wichmann relations and a
representation of the Poincare' group on the one-particle Hilbert space. The
abstract real Hilbert subspace version of the Tomita-Takesaki theory enables us
to bypass some limitations of the Wigner formalism by introducing an intrinsic
spacetime localization. Our approach works also for continuous spin
representations to which we associate a net of von Neumann algebras on
spacelike cones with the Reeh-Schlieder property. The positivity of the energy
in the representation turns out to be equivalent to the isotony of the net, in
the spirit of Borchers theorem. Our procedure extends to other spacetimes
homogeneous under a group of geometric transformations as in the case of
conformal symmetries and de Sitter spacetime.Comment: 22 pages, LaTeX. Some errors have been corrected. To appear on Rev.
Math. Phy
Geometric modular action for disjoint intervals and boundary conformal field theory
In suitable states, the modular group of local algebras associated with
unions of disjoint intervals in chiral conformal quantum field theory acts
geometrically. We translate this result into the setting of boundary conformal
QFT and interpret it as a relation between temperature and acceleration. We
also discuss aspects ("mixing" and "charge splitting") of geometric modular
action for unions of disjoint intervals in the vacuum state.Comment: Dedicated to John E. Roberts on the occasion of his 70th birthday; 24
pages, 3 figure
Extracellular Vesicles From Adipose Stem Cells Prevent Muscle Damage and Inflammation in a Mouse Model of Hind Limb Ischemia: Role of Neuregulin-1
Objectives: Critical hindlimb ischemia is a severe consequence of peripheral artery disease. Surgical treatment does not prevent skeletal muscle impairment or improve long-term patient outcomes. The present study investigates the protective/regenerative potential and the mechanism of action of adipose stem cell-derived extracellular vesicles (ASC-EVs) in a mouse model of hindlimb ischemia. Approach and Results: We demonstrated that ASC-EVs exert a protective effect on muscle damage by acting both on tissue microvessels and muscle cells. The genes involved in muscle regeneration were up-regulated in the ischemic muscles of ASC-EV-treated animals. MyoD expression has also been confirmed in satellite cells. This was followed by a reduction in muscle function impairment in vivo. ASC-EVs drive myoblast proliferation and differentiation in the in vitro ischemia/reoxygenation model. Moreover, ASC-EVs have shown an anti-apoptotic effect both in vitro and in vivo. Transcriptomic analyses have revealed that ASC-EVs carry a variety of pro-angiogenic mRNAs, while proteomic analyses have demonstrated an enrichment of NRG1 (neuregulin 1). A NRG1 blocking antibody used in vivo demonstrated that NRG1 is relevant to ASC-EV-induced muscle protection, vascular growth, and recruitment of inflammatory cells. Finally, bioinformatic analyses on 18 molecules that were commonly detected in ASC-EVs, including mRNAs and proteins, confirmed the enrichment of pathways involved in vascular growth and muscle regeneration/protection. Conclusions: This study demonstrates that ASC-EVs display pro-angiogenic and skeletal muscle protective properties that are associated with their NRG1/mRNA cargo. We, therefore, propose that ASC-EVs are a useful tool for therapeutic angiogenesis and muscle protection
Microvesicles derived from endothelial progenitor cells enhance neoangiogenesis of human pancreatic islets.
- …
