58 research outputs found

    Modular localization and Wigner particles

    Full text link
    We propose a framework for the free field construction of algebras of local observables which uses as an input the Bisognano-Wichmann relations and a representation of the Poincare' group on the one-particle Hilbert space. The abstract real Hilbert subspace version of the Tomita-Takesaki theory enables us to bypass some limitations of the Wigner formalism by introducing an intrinsic spacetime localization. Our approach works also for continuous spin representations to which we associate a net of von Neumann algebras on spacelike cones with the Reeh-Schlieder property. The positivity of the energy in the representation turns out to be equivalent to the isotony of the net, in the spirit of Borchers theorem. Our procedure extends to other spacetimes homogeneous under a group of geometric transformations as in the case of conformal symmetries and de Sitter spacetime.Comment: 22 pages, LaTeX. Some errors have been corrected. To appear on Rev. Math. Phy

    Geometric modular action for disjoint intervals and boundary conformal field theory

    Get PDF
    In suitable states, the modular group of local algebras associated with unions of disjoint intervals in chiral conformal quantum field theory acts geometrically. We translate this result into the setting of boundary conformal QFT and interpret it as a relation between temperature and acceleration. We also discuss aspects ("mixing" and "charge splitting") of geometric modular action for unions of disjoint intervals in the vacuum state.Comment: Dedicated to John E. Roberts on the occasion of his 70th birthday; 24 pages, 3 figure

    Extracellular Vesicles From Adipose Stem Cells Prevent Muscle Damage and Inflammation in a Mouse Model of Hind Limb Ischemia: Role of Neuregulin-1

    Get PDF
    Objectives: Critical hindlimb ischemia is a severe consequence of peripheral artery disease. Surgical treatment does not prevent skeletal muscle impairment or improve long-term patient outcomes. The present study investigates the protective/regenerative potential and the mechanism of action of adipose stem cell-derived extracellular vesicles (ASC-EVs) in a mouse model of hindlimb ischemia. Approach and Results: We demonstrated that ASC-EVs exert a protective effect on muscle damage by acting both on tissue microvessels and muscle cells. The genes involved in muscle regeneration were up-regulated in the ischemic muscles of ASC-EV-treated animals. MyoD expression has also been confirmed in satellite cells. This was followed by a reduction in muscle function impairment in vivo. ASC-EVs drive myoblast proliferation and differentiation in the in vitro ischemia/reoxygenation model. Moreover, ASC-EVs have shown an anti-apoptotic effect both in vitro and in vivo. Transcriptomic analyses have revealed that ASC-EVs carry a variety of pro-angiogenic mRNAs, while proteomic analyses have demonstrated an enrichment of NRG1 (neuregulin 1). A NRG1 blocking antibody used in vivo demonstrated that NRG1 is relevant to ASC-EV-induced muscle protection, vascular growth, and recruitment of inflammatory cells. Finally, bioinformatic analyses on 18 molecules that were commonly detected in ASC-EVs, including mRNAs and proteins, confirmed the enrichment of pathways involved in vascular growth and muscle regeneration/protection. Conclusions: This study demonstrates that ASC-EVs display pro-angiogenic and skeletal muscle protective properties that are associated with their NRG1/mRNA cargo. We, therefore, propose that ASC-EVs are a useful tool for therapeutic angiogenesis and muscle protection

    On the type of second quantization factors

    No full text

    On the type of second quantization factors

    No full text

    On the type of second quantization factors

    No full text

    The Tomita operator for the free scalar field

    No full text
    corecore