2,911 research outputs found
Efficiency of gas cooling and accretion at the disc-corona interface
In star-forming galaxies, stellar feedback can have a dual effect on the
circumgalactic medium both suppressing and stimulating gas accretion. The
trigger of gas accretion can be caused by disc material ejected into the halo
in the form of fountain clouds and by its interaction with the surrounding hot
corona. Indeed, at the disc-corona interface, the mixing between the
cold/metal-rich disc gas (T ~ 10^6 K)
can dramatically reduce the cooling time of a portion of the corona and produce
its condensation and accretion. We studied the interaction between fountain
clouds and corona in different galactic environments through parsec-scale
hydrodynamical simulations, including the presence of thermal conduction, a key
mechanism that influences gas condensation. Our simulations showed that the
coronal gas condensation strongly depends on the galactic environment, in
particular it is less efficient for increasing virial temperature/mass of the
haloes where galaxies reside and it is fully ineffective for objects with
virial masses larger than 10^13 Msun. This result implies that the coronal gas
cools down quickly in haloes with low-intermediate virial mass (Mvir <~ 3 x
10^12 Msun) but the ability to cool the corona decreases going from late-type
to early-type disc galaxies, potentially leading to the switching off of
accretion and the quenching of star formation in massive systems.Comment: 14 pages, 8 figures, accepted for publication in MNRA
Distribution and kinematics of atomic and molecular gas inside the Solar circle
The detailed distribution and kinematics of the atomic and the CO-bright
molecular hydrogen in the disc of the Milky Way inside the Solar circle are
derived under the assumptions of axisymmetry and pure circular motions. We
divide the Galactic disc into a series of rings, and assume that the gas in
each ring is described by four parameters: its rotation velocity, velocity
dispersion, midplane density and its scale height. We fit these parameters to
the Galactic HI and CO (J=1-0) data by producing artificial HI and CO
line-profiles and comparing them with the observations. Our approach allows us
to fit all parameters to the data simultaneously without assuming a-priori a
radial profile for one of the parameters. We present the distribution and
kinematics of the HI and H2 in both the approaching (QIV) and the receding (QI)
regions of the Galaxy. Our best-fit models reproduces remarkably well the
observed HI and CO longitude-velocity diagrams up to a few degrees of distance
from the midplane. With the exception of the innermost 2.5 kpc, QI and QIV show
very similar kinematics. The rotation curves traced by the HI and H2 follow
closely each other, flattening beyond R=6.5 kpc. Both the HI and the H2 surface
densities show a) a deep depression at 0.5<R<2.5 kpc, analogous to that shown
by some nearby barred galaxies, b) local overdensities that can be interpreted
in terms of spiral arms or ring-like features in the disk. The HI (H2)
properties are fairly constant in the region outside the depression, with
typical velocity dispersion of 8.9+/-1.1 (4.4+/-1.2) km/s, density of
0.43+/-0.11 (0.42+/-0.22) cm-3 and HWHM scale height of 202+/-28 (64+/-12) pc.
We also show that the HI opacity in the LAB data can be accounted for by using
an `effective' spin temperature of about 150 K: assuming an optically thin
regime leads to underestimate the HI mass by about 30%.Comment: 23 pages, 24 figures. Accepted by A&
Highly nonlinear pulse splitting and recombination in a two-dimensional granular network
The propagation of highly nonlinear signals in a branched two-dimensional granular system was investigated experimentally and numerically for a system composed of chains of spherical beads of different materials. The system studied consists of a double Y-shaped guide in which high- and low-modulus/mass chains of spheres are arranged in various geometries. We observed the transformation of a single or a train of solitary pulses crossing the interface between branches. We report fast splitting of the initial pulse, rapid chaotization of the signal and impulse redirection and bending. Pulse and energy trapping was also observed in the branches. Numerical analysis based on Hertzian interaction between the particles and the side walls of the guide was found in agreement with the experimental data, except for nonsymmetric arrangements of particles excited by a large mass striker
The stellar mass-halo mass relation of isolated field dwarfs: a critical test of CDM at the edge of galaxy formation
We fit the rotation curves of isolated dwarf galaxies to directly measure the
stellar mass-halo mass relation () over the mass range . By accounting for cusp-core
transformations due to stellar feedback, we find a monotonic relation with
little scatter. Such monotonicity implies that abundance matching should yield
a similar if the cosmological model is correct. Using the 'field
galaxy' stellar mass function from the Sloan Digital Sky Survey (SDSS) and the
halo mass function from the Cold Dark Matter Bolshoi simulation, we
find remarkable agreement between the two. This holds down to M, and to M if we
assume a power law extrapolation of the SDSS stellar mass function below M.
However, if instead of SDSS we use the stellar mass function of nearby galaxy
groups, then the agreement is poor. This occurs because the group stellar mass
function is shallower than that of the field below M,
recovering the familiar 'missing satellites' and 'too big to fail' problems.
Our result demonstrates that both problems are confined to group environments
and must, therefore, owe to 'galaxy formation physics' rather than exotic
cosmology.
Finally, we repeat our analysis for a Warm Dark Matter cosmology,
finding that it fails at 68% confidence for a thermal relic mass of keV, and keV if we use the power law extrapolation
of SDSS. We conclude by making a number of predictions for future surveys based
on these results.Comment: 22 pages; 2 Tables; 10 Figures. This is the version accepted for
publication in MNRAS. Key changes: (i) added substantially more information
on the surveys used to measure the stellar mass functions; (ii) added tests
of the robustness of our results. Results and conclusions unchanged from
previously. Minor typos corrected from previous versio
Angular Dependence of Highly Nonlinear Pulse Splitting in a Two Dimensional Granular Network
We investigate experimentally and numerically the
propagation of highly nonlinear signals in a branched two-dimensional
granular system composed by chains of uniform
spherical beads. The system consists of a Y-shaped guide with
various branch angles in which stainless steel spheres are
arranged. We study the dynamic behavior of a solitary pulse
crossing the bifurcated interface, and splitting between the two
branches. We report for the first time the dependence of the
split pulses' speed on the branch angles. Numerical simulations
based on Hertzian interaction between the particles are found in
agreement with the experimental data
Stationary models for the extra-planar gas in disc galaxies
The kinematics of the extra-planar neutral and ionised gas in disc galaxies
shows a systematic decline of the rotational velocity with height from the
plane (vertical gradient). This feature is not expected for a barotropic gas,
whilst it is well reproduced by baroclinic fluid homogeneous models. The
problem with the latter is that they require gas temperatures (above K)
much higher than the temperatures of the cold and warm components of the
extra-planar gas layer. In this paper, we attempt to overcome this problem by
describing the extra-planar gas as a system of gas clouds obeying the Jeans
equations. In particular, we consider models having the observed extra-planar
gas distribution and gravitational potential of the disc galaxy NGC 891: for
each model we construct pseudo-data cubes and we compare them with the HI data
cube of NGC 891. In all cases the rotational velocity gradients are in
qualitative agreement with the observations, but the synthetic and the observed
data cubes of NGC 891 show systematic differences that cannot be accommodated
by any of the explored models. We conclude that the extra-planar gas in disc
galaxies cannot be satisfactorily described by a stationary Jeans-like system
of gas clouds.Comment: 14 pages, 7 figures, accepted for pubblication in MNRA
The survival of gas clouds in the Circumgalactic Medium of Milky Way-like galaxies
Observational evidence shows that low-redshift galaxies are surrounded by
extended haloes of multiphase gas, the so-called 'circumgalactic medium' (CGM).
To study the survival of relatively cool gas (T < 10^5 K) in the CGM, we
performed a set of hydrodynamical simulations of cold (T = 10^4 K) neutral gas
clouds travelling through a hot (T = 2x10^6 K) and low-density (n = 10^-4
cm^-3) coronal medium, typical of Milky Way-like galaxies at large
galactocentric distances (~ 50-150 kpc). We explored the effects of different
initial values of relative velocity and radius of the clouds. Our simulations
were performed on a two-dimensional grid with constant mesh size (2 pc) and
they include radiative cooling, photoionization heating and thermal conduction.
We found that for large clouds (radii larger than 250 pc) the cool gas survives
for very long time (larger than 250 Myr): despite that they are partially
destroyed and fragmented into smaller cloudlets during their trajectory, the
total mass of cool gas decreases at very low rates. We found that thermal
conduction plays a significant role: its effect is to hinder formation of
hydrodynamical instabilities at the cloud-corona interface, keeping the cloud
compact and therefore more difficult to destroy. The distribution of column
densities extracted from our simulations are compatible with those observed for
low-temperature ions (e.g. SiII and SiIII) and for high-temperature ions (OVI)
once we take into account that OVI covers much more extended regions than the
cool gas and, therefore, it is more likely to be detected along a generic line
of sight.Comment: 12 pages, 10 figures. Accepted for publication in MNRA
Modelling the HI halo of the Milky Way
Aims: we studied the global distribution and kinematics of the extra-planar
neutral gas in the Milky Way. Methods: we built 3D models for a series of
Galactic HI layers, projected them for an inside view, and compared them with
the Leiden-Argentina-Bonn 21-cm observations. Results: we show that the Milky
Way disk is surrounded by an extended halo of neutral gas with a vertical
scale-height of 1.6[+0.6/-0.4] kpc and an HI mass of 3.2[+1.0/-0.9]x10^8 solar
masses, which is 5-10% of the total Galactic HI. This HI halo rotates more
slowly than the disk with a vertical velocity gradient of -15[+/-4] km/s/kpc.
We found evidence for a global infall motion, both vertical (20[+5/-7] km/s)
and radial (30[+7/-5]km/s). Conclusions: the Milky Way HI halo shows properties
similar to the halos of external galaxies and is compatible with being
predominantly produced by supernova explosions in the disk. It is most likely
composed of distinct gas complexes with masses of 10^4-10^5 solar masses of
which the Intermediate Velocity Clouds are the local manifestations. The
classical High Velocity Clouds appear to be a separate population.Comment: 13 pages, 9 figures, accepted for publication in A&
Accretion by the Galaxy
Cosmology requires at least half of the baryons in the Universe to be in the
intergalactic medium, much of which is believed to form hot coronae around
galaxies. Star-forming galaxies must be accreting from their coronae. HI
observations of external galaxies show that they have HI halos associated with
star formation. These halos are naturally modelled as ensembles of clouds
driven up by supernova bubbles. These models can fit the data successfully only
if clouds exchange mass and momentum with the corona. As a cloud orbits, it is
ablated and forms a turbulent wake where cold high-metallicity gas mixes with
hot coronal gas causing the prompt cooling of the latter. As a consequence the
total mass of HI increases. This model has recently been used to model the
Leiden-Argentina-Bonn survey of Galactic HI. The values of the model's
parameters that are required to model NGC 891, NGC 2403 and our Galaxy show a
remarkable degree of consistency, despite the very different natures of the two
external galaxies and the dramatic difference in the nature of the data for our
Galaxy and the external galaxies. The parameter values are also consistent with
hydrodynamical simulations of the ablation of individual clouds. The model
predicts that a galaxy that loses its cool-gas disc for instance through a
major merger cannot reform it from its corona; it can return to steady star
formation only if it can capture a large body of cool gas, for example by
accreting a gas-rich dwarf. Thus the model explains how major mergers can make
galaxies "red and dead."Comment: Invited review at "Assembling the Puzzle of the Milky Way", Grand
Bornand, April 2011; 6 page
Fountain-driven gas accretion by the Milky Way
Accretion of fresh gas at a rate of ~ 1 M_{sun} yr^{-1} is necessary in
star-forming disc galaxies, such as the Milky Way, in order to sustain their
star-formation rates. In this work we present the results of a new hydrodynamic
simulation supporting the scenario in which the gas required for star formation
is drawn from the hot corona that surrounds the star-forming disc. In
particular, the cooling of this hot gas and its accretion on to the disc are
caused by the passage of cold galactic fountain clouds through the corona.Comment: 2 pages, 1 figure. To appear in the proceedings of the conference
"Assembling the Puzzle of the Milky Way", Le Grand-Bornand 17-22 April 2011,
European Physical Journal, editors C. Reyl\'e, A. Robin and M. Schulthei
- …
