2,911 research outputs found

    Efficiency of gas cooling and accretion at the disc-corona interface

    Get PDF
    In star-forming galaxies, stellar feedback can have a dual effect on the circumgalactic medium both suppressing and stimulating gas accretion. The trigger of gas accretion can be caused by disc material ejected into the halo in the form of fountain clouds and by its interaction with the surrounding hot corona. Indeed, at the disc-corona interface, the mixing between the cold/metal-rich disc gas (T ~ 10^6 K) can dramatically reduce the cooling time of a portion of the corona and produce its condensation and accretion. We studied the interaction between fountain clouds and corona in different galactic environments through parsec-scale hydrodynamical simulations, including the presence of thermal conduction, a key mechanism that influences gas condensation. Our simulations showed that the coronal gas condensation strongly depends on the galactic environment, in particular it is less efficient for increasing virial temperature/mass of the haloes where galaxies reside and it is fully ineffective for objects with virial masses larger than 10^13 Msun. This result implies that the coronal gas cools down quickly in haloes with low-intermediate virial mass (Mvir <~ 3 x 10^12 Msun) but the ability to cool the corona decreases going from late-type to early-type disc galaxies, potentially leading to the switching off of accretion and the quenching of star formation in massive systems.Comment: 14 pages, 8 figures, accepted for publication in MNRA

    Distribution and kinematics of atomic and molecular gas inside the Solar circle

    Get PDF
    The detailed distribution and kinematics of the atomic and the CO-bright molecular hydrogen in the disc of the Milky Way inside the Solar circle are derived under the assumptions of axisymmetry and pure circular motions. We divide the Galactic disc into a series of rings, and assume that the gas in each ring is described by four parameters: its rotation velocity, velocity dispersion, midplane density and its scale height. We fit these parameters to the Galactic HI and CO (J=1-0) data by producing artificial HI and CO line-profiles and comparing them with the observations. Our approach allows us to fit all parameters to the data simultaneously without assuming a-priori a radial profile for one of the parameters. We present the distribution and kinematics of the HI and H2 in both the approaching (QIV) and the receding (QI) regions of the Galaxy. Our best-fit models reproduces remarkably well the observed HI and CO longitude-velocity diagrams up to a few degrees of distance from the midplane. With the exception of the innermost 2.5 kpc, QI and QIV show very similar kinematics. The rotation curves traced by the HI and H2 follow closely each other, flattening beyond R=6.5 kpc. Both the HI and the H2 surface densities show a) a deep depression at 0.5<R<2.5 kpc, analogous to that shown by some nearby barred galaxies, b) local overdensities that can be interpreted in terms of spiral arms or ring-like features in the disk. The HI (H2) properties are fairly constant in the region outside the depression, with typical velocity dispersion of 8.9+/-1.1 (4.4+/-1.2) km/s, density of 0.43+/-0.11 (0.42+/-0.22) cm-3 and HWHM scale height of 202+/-28 (64+/-12) pc. We also show that the HI opacity in the LAB data can be accounted for by using an `effective' spin temperature of about 150 K: assuming an optically thin regime leads to underestimate the HI mass by about 30%.Comment: 23 pages, 24 figures. Accepted by A&

    Highly nonlinear pulse splitting and recombination in a two-dimensional granular network

    Get PDF
    The propagation of highly nonlinear signals in a branched two-dimensional granular system was investigated experimentally and numerically for a system composed of chains of spherical beads of different materials. The system studied consists of a double Y-shaped guide in which high- and low-modulus/mass chains of spheres are arranged in various geometries. We observed the transformation of a single or a train of solitary pulses crossing the interface between branches. We report fast splitting of the initial pulse, rapid chaotization of the signal and impulse redirection and bending. Pulse and energy trapping was also observed in the branches. Numerical analysis based on Hertzian interaction between the particles and the side walls of the guide was found in agreement with the experimental data, except for nonsymmetric arrangements of particles excited by a large mass striker

    The stellar mass-halo mass relation of isolated field dwarfs: a critical test of Λ\LambdaCDM at the edge of galaxy formation

    Get PDF
    We fit the rotation curves of isolated dwarf galaxies to directly measure the stellar mass-halo mass relation (MM200M_*-M_{200}) over the mass range 5×105<M/M<1085 \times 10^5 < M_{*}/{\rm M}_\odot < 10^{8}. By accounting for cusp-core transformations due to stellar feedback, we find a monotonic relation with little scatter. Such monotonicity implies that abundance matching should yield a similar MM200M_*-M_{200} if the cosmological model is correct. Using the 'field galaxy' stellar mass function from the Sloan Digital Sky Survey (SDSS) and the halo mass function from the Λ\Lambda Cold Dark Matter Bolshoi simulation, we find remarkable agreement between the two. This holds down to M2005×109M_{200} \sim 5 \times 10^9M_\odot, and to M2005×108M_{200} \sim 5 \times 10^8M_\odot if we assume a power law extrapolation of the SDSS stellar mass function below M107M_* \sim 10^7M_\odot. However, if instead of SDSS we use the stellar mass function of nearby galaxy groups, then the agreement is poor. This occurs because the group stellar mass function is shallower than that of the field below M109M_* \sim 10^9M_\odot, recovering the familiar 'missing satellites' and 'too big to fail' problems. Our result demonstrates that both problems are confined to group environments and must, therefore, owe to 'galaxy formation physics' rather than exotic cosmology. Finally, we repeat our analysis for a Λ\Lambda Warm Dark Matter cosmology, finding that it fails at 68% confidence for a thermal relic mass of mWDM<1.25m_{\rm WDM} < 1.25keV, and mWDM<2m_{\rm WDM} < 2keV if we use the power law extrapolation of SDSS. We conclude by making a number of predictions for future surveys based on these results.Comment: 22 pages; 2 Tables; 10 Figures. This is the version accepted for publication in MNRAS. Key changes: (i) added substantially more information on the surveys used to measure the stellar mass functions; (ii) added tests of the robustness of our results. Results and conclusions unchanged from previously. Minor typos corrected from previous versio

    Angular Dependence of Highly Nonlinear Pulse Splitting in a Two Dimensional Granular Network

    Get PDF
    We investigate experimentally and numerically the propagation of highly nonlinear signals in a branched two-dimensional granular system composed by chains of uniform spherical beads. The system consists of a Y-shaped guide with various branch angles in which stainless steel spheres are arranged. We study the dynamic behavior of a solitary pulse crossing the bifurcated interface, and splitting between the two branches. We report for the first time the dependence of the split pulses' speed on the branch angles. Numerical simulations based on Hertzian interaction between the particles are found in agreement with the experimental data

    Stationary models for the extra-planar gas in disc galaxies

    Full text link
    The kinematics of the extra-planar neutral and ionised gas in disc galaxies shows a systematic decline of the rotational velocity with height from the plane (vertical gradient). This feature is not expected for a barotropic gas, whilst it is well reproduced by baroclinic fluid homogeneous models. The problem with the latter is that they require gas temperatures (above 10510^5 K) much higher than the temperatures of the cold and warm components of the extra-planar gas layer. In this paper, we attempt to overcome this problem by describing the extra-planar gas as a system of gas clouds obeying the Jeans equations. In particular, we consider models having the observed extra-planar gas distribution and gravitational potential of the disc galaxy NGC 891: for each model we construct pseudo-data cubes and we compare them with the HI data cube of NGC 891. In all cases the rotational velocity gradients are in qualitative agreement with the observations, but the synthetic and the observed data cubes of NGC 891 show systematic differences that cannot be accommodated by any of the explored models. We conclude that the extra-planar gas in disc galaxies cannot be satisfactorily described by a stationary Jeans-like system of gas clouds.Comment: 14 pages, 7 figures, accepted for pubblication in MNRA

    The survival of gas clouds in the Circumgalactic Medium of Milky Way-like galaxies

    Get PDF
    Observational evidence shows that low-redshift galaxies are surrounded by extended haloes of multiphase gas, the so-called 'circumgalactic medium' (CGM). To study the survival of relatively cool gas (T < 10^5 K) in the CGM, we performed a set of hydrodynamical simulations of cold (T = 10^4 K) neutral gas clouds travelling through a hot (T = 2x10^6 K) and low-density (n = 10^-4 cm^-3) coronal medium, typical of Milky Way-like galaxies at large galactocentric distances (~ 50-150 kpc). We explored the effects of different initial values of relative velocity and radius of the clouds. Our simulations were performed on a two-dimensional grid with constant mesh size (2 pc) and they include radiative cooling, photoionization heating and thermal conduction. We found that for large clouds (radii larger than 250 pc) the cool gas survives for very long time (larger than 250 Myr): despite that they are partially destroyed and fragmented into smaller cloudlets during their trajectory, the total mass of cool gas decreases at very low rates. We found that thermal conduction plays a significant role: its effect is to hinder formation of hydrodynamical instabilities at the cloud-corona interface, keeping the cloud compact and therefore more difficult to destroy. The distribution of column densities extracted from our simulations are compatible with those observed for low-temperature ions (e.g. SiII and SiIII) and for high-temperature ions (OVI) once we take into account that OVI covers much more extended regions than the cool gas and, therefore, it is more likely to be detected along a generic line of sight.Comment: 12 pages, 10 figures. Accepted for publication in MNRA

    Modelling the HI halo of the Milky Way

    Full text link
    Aims: we studied the global distribution and kinematics of the extra-planar neutral gas in the Milky Way. Methods: we built 3D models for a series of Galactic HI layers, projected them for an inside view, and compared them with the Leiden-Argentina-Bonn 21-cm observations. Results: we show that the Milky Way disk is surrounded by an extended halo of neutral gas with a vertical scale-height of 1.6[+0.6/-0.4] kpc and an HI mass of 3.2[+1.0/-0.9]x10^8 solar masses, which is 5-10% of the total Galactic HI. This HI halo rotates more slowly than the disk with a vertical velocity gradient of -15[+/-4] km/s/kpc. We found evidence for a global infall motion, both vertical (20[+5/-7] km/s) and radial (30[+7/-5]km/s). Conclusions: the Milky Way HI halo shows properties similar to the halos of external galaxies and is compatible with being predominantly produced by supernova explosions in the disk. It is most likely composed of distinct gas complexes with masses of 10^4-10^5 solar masses of which the Intermediate Velocity Clouds are the local manifestations. The classical High Velocity Clouds appear to be a separate population.Comment: 13 pages, 9 figures, accepted for publication in A&

    Accretion by the Galaxy

    Get PDF
    Cosmology requires at least half of the baryons in the Universe to be in the intergalactic medium, much of which is believed to form hot coronae around galaxies. Star-forming galaxies must be accreting from their coronae. HI observations of external galaxies show that they have HI halos associated with star formation. These halos are naturally modelled as ensembles of clouds driven up by supernova bubbles. These models can fit the data successfully only if clouds exchange mass and momentum with the corona. As a cloud orbits, it is ablated and forms a turbulent wake where cold high-metallicity gas mixes with hot coronal gas causing the prompt cooling of the latter. As a consequence the total mass of HI increases. This model has recently been used to model the Leiden-Argentina-Bonn survey of Galactic HI. The values of the model's parameters that are required to model NGC 891, NGC 2403 and our Galaxy show a remarkable degree of consistency, despite the very different natures of the two external galaxies and the dramatic difference in the nature of the data for our Galaxy and the external galaxies. The parameter values are also consistent with hydrodynamical simulations of the ablation of individual clouds. The model predicts that a galaxy that loses its cool-gas disc for instance through a major merger cannot reform it from its corona; it can return to steady star formation only if it can capture a large body of cool gas, for example by accreting a gas-rich dwarf. Thus the model explains how major mergers can make galaxies "red and dead."Comment: Invited review at "Assembling the Puzzle of the Milky Way", Grand Bornand, April 2011; 6 page

    Fountain-driven gas accretion by the Milky Way

    Full text link
    Accretion of fresh gas at a rate of ~ 1 M_{sun} yr^{-1} is necessary in star-forming disc galaxies, such as the Milky Way, in order to sustain their star-formation rates. In this work we present the results of a new hydrodynamic simulation supporting the scenario in which the gas required for star formation is drawn from the hot corona that surrounds the star-forming disc. In particular, the cooling of this hot gas and its accretion on to the disc are caused by the passage of cold galactic fountain clouds through the corona.Comment: 2 pages, 1 figure. To appear in the proceedings of the conference "Assembling the Puzzle of the Milky Way", Le Grand-Bornand 17-22 April 2011, European Physical Journal, editors C. Reyl\'e, A. Robin and M. Schulthei
    corecore