60 research outputs found
Non-perturbative measurement of low-intensity charged particle beams
Non-perturbative measurements of low-intensity charged particle beams are particularly challenging to beam diagnostics due to the low amplitude of the induced electromagnetic fields. In the low-energy antiproton decelerator (AD) and the future extra low energy antiproton rings at CERN, an absolute measurement of the beam intensity is essential to monitor the operation efficiency. Superconducting quantum interference device (SQUID) based cryogenic current comparators (CCC) have been used for measuring slow charged beams in the nA range, showing a very good current resolution. But these were unable to measure fast bunched beams, due to the slew-rate limitation of SQUID devices and presented a strong susceptibility to external perturbations. Here, we present a CCC system developed for the AD machine, which was optimised in terms of its current resolution, system stability, ability to cope with short bunched beams, and immunity to mechanical vibrations. This paper presents the monitor design and the first results from measurements with a low energy antiproton beam obtained in the AD in 2015. These are the first CCC beam current measurements ever performed in a synchrotron machine with both coasting and short bunched beams. It is shown that the system is able to stably measure the AD beam throughout the entire cycle, with a current resolution of
Control-based imputation for sensitivity analyses in informative censoring for recurrent event data
In clinical trials, missing data commonly arise through nonadherence to the randomized treatment or to study procedure. For trials in which recurrent event endpoints are of interests, conventional analyses using the proportional intensity model or the count model assume that the data are missing at random, which cannot be tested using the observed data alone. Thus, sensitivity analyses are recommended. We implement the control-based multiple imputation as sensitivity analyses for the recurrent event data. We model the recurrent event using a piecewise exponential proportional intensity model with frailty and sample the parameters from the posterior distribution. We impute the number of events after dropped out and correct the variance estimation using a bootstrap procedure. We apply the method to an application of sitagliptin study
Search for Dark Matter Axions with CAST-CAPP
The CAST-CAPP axion haloscope, operating at CERN inside the CAST dipole magnet, has searched for axions in the 19.74 μeV to 22.47 μeV mass range. The detection concept follows the Sikivie haloscope principle, where Dark Matter axions convert into photons within a resonator immersed in a magnetic field. The CAST-CAPP resonator is an array of four individual rectangular cavities inserted in a strong dipole magnet, phase-matched to maximize the detection sensitivity. Here we report on the data acquired for 4124 h from 2019 to 2021. Each cavity is equipped with a fast frequency tuning mechanism of 10 MHz/ min between 4.774 GHz and 5.434 GHz. In the present work, we exclude axion-photon couplings for virialized galactic axions down to gaγγ = 8 × 10−14 GeV−1 at the 90% confidence level. The here implemented phase-matching technique also allows for future large-scale upgrades
The daily modulations and broadband strategy in axion searches. An application with CAST-CAPP detector
It has been previously advocated that the presence of the daily and annual
modulations of the axion flux on the Earth's surface may dramatically change
the strategy of the axion searches. The arguments were based on the so-called
Axion Quark Nugget (AQN) dark matter model which was originally put forward to
explain the similarity of the dark and visible cosmological matter densities
. In this framework, the population
of galactic axions with mass and velocity will be accompanied by
axions with typical velocities emitted by AQNs.
Furthermore, in this framework, it has also been argued that the AQN-induced
axion daily modulation (in contrast with the conventional WIMP paradigm) could
be as large as , which represents the main motivation for the
present investigation. We argue that the daily modulations along with the
broadband detection strategy can be very useful tools for the discovery of such
relativistic axions. The data from the CAST-CAPP detector have been used
following such arguments. Unfortunately, due to the dependence of the amplifier
chain on temperature-dependent gain drifts and other factors, we could not
conclusively show the presence or absence of a dark sector-originated daily
modulation. However, this proof of principle analysis procedure can serve as a
reference for future studies.Comment: 18 pages, 8 figure
Search for Dark Matter Axions with CAST-CAPP
The CAST-CAPP axion haloscope, operating at CERN inside the CAST dipole
magnet, has searched for axions in the 19.74 eV to 22.47 eV mass
range. The detection concept follows the Sikivie haloscope principle, where
Dark Matter axions convert into photons within a resonator immersed in a
magnetic field. The CAST-CAPP resonator is an array of four individual
rectangular cavities inserted in a strong dipole magnet, phase-matched to
maximize the detection sensitivity. Here we report on the data acquired for
4124 h from 2019 to 2021. Each cavity is equipped with a fast frequency tuning
mechanism of 10 MHz/min between 4.774 GHz and 5.434 GHz. In the present work,
we exclude axion-photon couplings for virialized galactic axions down to
at the 90% confidence
level. The here implemented phase-matching technique also allows for future
large-scale upgrades.Comment: 24 pages, 5 figures, Published version available with Open Access at
https://www.nature.com/articles/s41467-022-33913-
First results of the CAST-RADES haloscope search for axions at 34.67 µeV
We present results of the Relic Axion Dark-Matter Exploratory Setup (RADES), a detector which is part of the CERN Axion Solar Telescope (CAST), searching for axion dark matter in the 34.67 µeV mass range. A radio frequency cavity consisting of 5 sub-cavities coupled by inductive irises took physics data inside the CAST dipole magnet for the first time using this filter-like haloscope geometry. An exclusion limit with a 95% credibility level on the axion-photon coupling constant of ga¿ ¿ 4 × 10-13 GeV-1 over a mass range of 34.6738 µeV < ma< 34.6771 µeV is set. This constitutes a significant improvement over the current strongest limit set by CAST at this mass and is at the same time one of the most sensitive direct searches for an axion dark matter candidate above the mass of 25 µeV. The results also demonstrate the feasibility of exploring a wider mass range around the value probed by CAST-RADES in this work using similar coherent resonant cavities. © 2021, The Author(s)
Examining differences in cognitive and affective theory of mind between persons with high and low extent of somatic symptoms: an experimental study
- …
