1,701 research outputs found

    Higher order effects in the 16O(d,p)17O^{16}O(d,p)^{17}O and 16O(d,n)17F^{16}O(d,n)^{17}F transfer reactions

    Get PDF
    Full Coupled Channels Calculations were performed for the 16O(d,n)17F^{16}O(d,n)^{17}F and 16O(d,p)17O^{16}O(d,p)^{17}O transfer reactions at several deuteron incident energies from Elab=2.29E_{lab}=2.29 MeV up to 3.27 MeV. A strong polarization effect between the entrance channel and the transfer channels 16O(d,n)17F(1/2+,0.495)^{16}O(d,n)^{17}F(1/2^{+},0.495) and 16O(d,p)17O(1/2+,0.87)^{16}O(d,p)^{17}O(1/2^{+},0.87) was observed. This polarization effect had to be taken into account in order to obtain realistic spectroscopic factors from these reactions.Comment: 15 papes, 13 figures, accepted for publication in Phys. Rev.

    Distorted wave impulse approximation analysis for spin observables in nucleon quasi-elastic scattering and enhancement of the spin-longitudinal response

    Full text link
    We present a formalism of distorted wave impulse approximation (DWIA) for analyzing spin observables in nucleon inelastic and charge exchange reactions leading to the continuum. It utilizes response functions calculated by the continuum random phase approximation (RPA), which include the effective mass, the spreading widths and the \Delta degrees of freedom. The Fermi motion is treated by the optimal factorization, and the non-locality of the nucleon-nucleon t-matrix by an averaged reaction plane approximation. By using the formalism we calculated the spin-longitudinal and the spin-transverse cross sections, ID_q and ID_p, of 12C, 40Ca (\vec{p},\vec{n}) at 494 and 346 MeV. The calculation reasonably reproduced the observed ID_q, which is consistent with the predicted enhancement of the spin-longitudinal response function R_L. However, the observed ID_p is much larger than the calculated one, which was consistent with neither the predicted quenching nor the spin-transverse response function R_T obtained by the (e,e') scattering. The Landau-Migdal parameter g'_N\Delta for the N\Delta transition interaction and the effective mass at the nuclear center m^*(r=0) are treated as adjustable parameters. The present analysis indicates that the smaller g'_{N\Delta}(\approx 0.3) and m^*(0) \approx 0.7 m are preferable. We also investigate the validity of the plane wave impulse approximation (PWIA) with the effective nucleon number approximation for the absorption, by means of which R_L and R_T have conventionally been extracted.Comment: RevTex 3, 29 pages, 2 tables, 8 figure

    Effect of interchain separation on the photoinduced absorption spectra of polycarbazolyldiacetylenes

    Get PDF
    The photoinduced absorption spectra of a novel polycarbazolyldiacetylene with long aliphatic chains on the carbazolyl side groups are measured and compared with those of the unsubstituted polyDCHD. The two polymers in the blue form exhibit very similar electronic absorption spectra and Raman frequencies. This fact indicates that the conjugation length of the polydiacetylene backbone is not too affected by the long substituents. In contrast, the near steady-state photoinduced absorption spectra show that different photogeneration mechanisms are involved in the two polymers. This result can be ascribed to the role played by the interchain distance in the dynamics of the relaxation processes in polydiacetylenes

    Positive effects of a novel non-peptidyl low molecular weight radical scavenger in renal ischemia/reperfusion: a preliminary report

    Get PDF
    Ischemia/reperfusion (I/R) is one of the most common causes of acute kidney injury. Reactive oxygen species have been recognized to be an important contributor to the pathogenesis of I/R injury. We hypothesize that a non-peptidyl low molecular weight radical scavenger (IAC) therapy may counteract this factor, ultimately providing some protection after acute phase renal I/R injury. The aim of this preliminary study was to assess the ability of IAC to reduce acute kidney injury in C57BL/6 mice after 30-minute of bilateral ischemia followed by reperfusion. The rise in serum creatinine level was higher in C57BL/6 control mice after I/R when compared to IAC (1 mg)-treated mice. Control mice showed greater body weight loss compared to IAC-treated mice, and at pathology, reduced signs of tubular necrosis were also evident in IAC-treated mice. These preliminary evidences lay the basis for more comprehensive studies on the positive effects of IAC as a complementary therapeutic approach for acute phase renal I/R injury

    Pion Excess, Nuclear Correlations, and the Interpretation of (p,n\vec p, \vec n) Spin Transfer Experiments

    Full text link
    Conventional theories of nuclear interactions predict a net increase in the distribution of virtual pions in nuclei relative to free nucleons. Analysis of data from several nuclear experiments has led to claims of evidence against such a pion excess. These conclusions are usually based on a collective theory (RPA) of the pions, which may be inadequate. The issue is the energy dependence of the nuclear response, which differs for theories with strong NN correlations from the RPA predictions. In the present paper, information about the energy dependence is extracted from sum rules, which are calculated for such a correlated, noncollective nuclear theory. The results lead to much reduced sensitivity of nuclear reactions to the correlations that are responsible for the pion excess. The primary example is (p,n)(\vec p,\vec n) spin transfer, for which the expected effects are found to be smaller than the experimental uncertainties. The analysis has consequences for Deep Inelastic Scattering (DIS) experiments as well.Comment: 16 pages, LaTeX, no figures, submitted to Phys. Rev.

    Quasi-Elastic Scattering in the Inclusive (3^3He, t) Reaction

    Get PDF
    The triton energy spectra of the charge-exchange 12^{12}C(3^3He,t) reaction at 2 GeV beam energy are analyzed in the quasi-elastic nucleon knock-out region. Considering that this region is mainly populated by the charge-exchange of a proton in 3^3He with a neutron in the target nucleus and the final proton going in the continuum, the cross-sections are written in the distorted-wave impulse approximation. The t-matrix for the elementary exchange process is constructed in the DWBA, using one pion- plus rho-exchange potential for the spin-isospin nucleon- nucleon potential. This t-matrix reproduces the experimental data on the elementary pn \rightarrow np process. The calculated cross-sections for the 12^{12}C(3^3He,t) reaction at 2o2^o to 7o7^o triton emission angle are compared with the corresponding experimental data, and are found in reasonable overall accord.Comment: 19 pages, latex, 11 postscript figures available at [email protected], submitted to Phy.Rev.

    Slow Light Propagation in a Thin Optical Fiber via Electromagnetically Induced Transparency

    Get PDF
    We propose a novel configuration that utilizes electromagnetically induced transparency (EIT) to tailor a fiber mode propagating inside a thin optical fiber and coherently control its dispersion properties to drastically reduce the group velocity of the fiber mode. The key to this proposal is: the evanescent-like field of the thin fiber strongly couples with the surrounding active medium, so that the EIT condition is met by the medium. We show how the properties of the fiber mode is modified due to the EIT medium, both numerically and analytically. We demonstrate that the group velocity of the new modified fiber mode can be drastically reduced (approximately 44 m/sec) using the coherently prepared orthohydrogen doped in a matrix of parahydrogen crystal as the EIT medium.Comment: 10 pages in two column RevTex4, 6 Figure

    p, He, and C to Fe cosmic-ray primary fluxes in diffusion models: Source and transport signatures on fluxes and ratios

    Full text link
    The propagated fluxes of proton, helium, and heavier primary cosmic-ray species (up to Fe) are a means to indirectly access the source spectrum of cosmic rays. We check the compatibility of the primary fluxes with the transport parameters derived from the B/C analysis, but also if they bring further constraints. Proton data are well described in the simplest model defined by a power-law source spectrum and plain diffusion. They can also be accommodated by models with, e.g., convection and/or reacceleration. There is no need for breaks in the source spectral indices below 1\sim 1 TeV/n. Fits on the primary fluxes alone do not provide physical constraints on the transport parameters. If we let free the source spectrum dQ/dE=qβηSRαdQ/dE = q \beta^{\eta_S} {\cal R}^{-\alpha} and fix the diffusion coefficient K(R)=K0βηTRδK(R)= K_0\beta^{\eta_T} {\cal R}^{\delta} such as to reproduce the B/C ratio, the MCMC analysis constrains the source spectral index α\alpha to be in the range 2.22.52.2-2.5 for all primary species up to Fe, regardless of the value of the diffusion slope δ\delta. The ηS\eta_S low-energy shape of the source spectrum is degenerate with the low-energy shape ηT\eta_T of the diffusion coefficient: we find ηSηT0\eta_S-\eta_T\approx 0 for p and He data, but ηSηT1\eta_S-\eta_T\approx 1 for C to Fe primary species. This is consistent with the toy-model calculation in which the shape of the p/He and C/O to Fe/O data is reproduced if ηSηT01\eta_S-\eta_T\approx 0-1 (no need for different slopes α\alpha). When plotted as a function of the kinetic energy per nucleon, the low-energy p/He ratio is shaped mostly by the modulation effect, whereas primary/O ratios are mostly shaped by their destruction rate.Comment: 18 pages, 14 figures: accepted in A&A (1 table added

    Ground State Correlations in 16O and 40Ca

    Full text link
    We study the ground state properties of doubly closed shell nuclei 16^{16}O and 40^{40}Ca in the framework of Correlated Basis Function theory using state dependent correlations, with central and tensor components. The realistic Argonne v14v_{14} and v8v'_{8} two-nucleon potentials and three-nucleon potentials of the Urbana class have been adopted. By means of the Fermi Hypernetted Chain integral equations, in conjunction with the Single Operator Chain approximation, we evaluate the ground state energy, one- and two-body densities and electromagnetic and spin static responses for both nuclei. In 16^{16}O we compare our results with the available Monte Carlo and Coupled Cluster ones and find a satisfying agreement. As in the nuclear matter case with similar interactions and wave functions, the nuclei result under-bound by 2--3 MeV/A.Comment: 33 RevTeX pages + 8 figures, to appear in Phys.Rev.
    corecore