19,133 research outputs found
Sphaleron of a 4 dimensional SO(4) Higgs model
We construct the finite energy path between topologically distinct vacua of a
4 dimensional SO(4) Higgs model which is known to support an instanton, and
show that there is a sphaleron with Chern-Simons number N_CS=1/2 at the top of
the energy barrier. This is carried out using the original geometric loop
construction of Manton.Comment: 9 pages, 2 figures, LaTex format, minor text corrections. To be
published in Phys. Lett.
Quantum repeaters with individual rare-earth ions at telecommunication wavelengths
We present a quantum repeater scheme that is based on individual erbium and
europium ions. Erbium ions are attractive because they emit photons at
telecommunication wavelength, while europium ions offer exceptional spin
coherence for long-term storage. Entanglement between distant erbium ions is
created by photon detection. The photon emission rate of each erbium ion is
enhanced by a microcavity with high Purcell factor, as has recently been
demonstrated. Entanglement is then transferred to nearby europium ions for
storage. Gate operations between nearby ions are performed using dynamically
controlled electric-dipole coupling. These gate operations allow entanglement
swapping to be employed in order to extend the distance over which entanglement
is distributed. The deterministic character of the gate operations allows
improved entanglement distribution rates in comparison to atomic ensemble-based
protocols. We also propose an approach that utilizes multiplexing in order to
enhance the entanglement distribution rate.Comment: 13 pages, 4 figure
Shor's quantum factoring algorithm on a photonic chip
Shor's quantum factoring algorithm finds the prime factors of a large number
exponentially faster than any other known method a task that lies at the heart
of modern information security, particularly on the internet. This algorithm
requires a quantum computer a device which harnesses the `massive parallelism'
afforded by quantum superposition and entanglement of quantum bits (or qubits).
We report the demonstration of a compiled version of Shor's algorithm on an
integrated waveguide silica-on-silicon chip that guides four single-photon
qubits through the computation to factor 15.Comment: 2 pages, 1 figur
The multifrequency behaviour of the recurrent nova RS Ophiuchi
This review concentrates on the multifrequency behaviour of RS Ophiuchi and
in particular during its latest outburst. Confirmation of the 1945 outburst,
bipolar outflows and its possible fate as a Type Ia Supernova are discussed.Comment: 5 pages, 5 figures, in The Golden Age of Cataclysmic Variables and
Related Objects, F. Giovannelli & L. Sabau-Graziati (eds.), Mem. SAIt. 83 N.2
(in press
The Spatial Correlation of Bent-Tail Galaxies and Galaxy Clusters
We have completed a deep radio continuum survey covering 86 square degrees of
the Spitzer-South Pole Telescope deep field to test whether bent-tail galaxies
are associated with galaxy clusters. We present a new catalogue of 22 bent-tail
galaxies and a further 24 candidate bent-tail galaxies. Surprisingly, of the 8
bent-tail galaxies with photometric redshifts, only two are associated with
known clusters. While the absence of bent-tail sources in known clusters may be
explained by effects such as sensitivity, the absence of known clusters
associated with most bent-tail galaxies casts doubt upon current models of
bent-tail galaxies.Comment: Accepted by MNRA
Radio Frequency Models of Novae in eruption. I. The Free-Free Process in Bipolar Morphologies
Observations of novae at radio frequencies provide us with a measure of the
total ejected mass, density profile and kinetic energy of a nova eruption. The
radio emission is typically well characterized by the free-free emission
process. Most models to date have assumed spherical symmetry for the eruption,
although it has been known for as long as there have been radio observations of
these systems, that spherical eruptions are to simplistic a geometry. In this
paper, we build bipolar models of the nova eruption, assuming the free-free
process, and show the effects of varying different parameters on the radio
light curves. The parameters considered include the ratio of the minor- to
major-axis, the inclination angle and shell thickness (further parameters are
provided in the appendix). We also show the uncertainty introduced when fitting
spherical model synthetic light curves to bipolar model synthetic light curves.
We find that the optically thick phase rises with the same power law () for both the spherical and bipolar models. In the bipolar case
there is a "plateau" phase -- depending on the thickness of the shell as well
as the ratio of the minor- to major-axis -- before the final decline, that
follows the same power law () as in the spherical case.
Finally, fitting spherical models to the bipolar model synthetic light curves
requires, in the worst case scenario, doubling the ejected mass, more than
halving the electron temperature and reducing the shell thickness by nearly a
factor of 10. This implies that in some systems we have been over predicting
the ejected masses and under predicting the electron temperature of the ejecta.Comment: 9 pages, 6 figures, accepted for publication in ApJ, accompanying
movie to figure 3 available at
http://www.ast.uct.ac.za/~valerio/papers/radioI
Superconductivity in Heavy Alkaline-Earths Intercalated Graphites
We report the discovery of superconductivity below 1.65(6) K in
Sr-intercalated graphite SrC6, by susceptibility and specific heat (Cp)
measurements. In comparison with CaC6, we found that the anisotropy of the
upper critical fields for SrC6 is much reduced. The Cp anomaly at Tc is smaller
than the BCS prediction indicating an anisotropic superconducting gap for SrC6
similar to CaC6. The significantly lower Tc of SrC6 as compared to CaC6 can be
understood in terms of "negative" pressure effects, which decreases the
electron-phonon coupling for both in-plane intercalant and the out-of-plane C
phonon modes. We observed no superconductivity for BaC6 down to 0.3 K.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Let
Quantum-enhanced phase estimation using optical spin squeezing
Quantum metrology enables estimation of optical phase shifts with precision
beyond the shot-noise limit. One way to exceed this limit is to use squeezed
states, where the quantum noise of one observable is reduced at the expense of
increased quantum noise for its complementary partner. Because shot-noise
limits the phase sensitivity of all classical states, reduced noise in the
average value for the observable being measured allows for improved phase
sensitivity. However, additional phase sensitivity can be achieved using phase
estimation strategies that account for the full distribution of measurement
outcomes. Here we experimentally investigate the phase sensitivity of a
five-particle optical spin-squeezed state generated by photon subtraction from
a parametric downconversion photon source. The Fisher information for all
photon-number outcomes shows it is possible to obtain a quantum advantage of
1.58 compared to the shot-noise limit, even though due to experimental
imperfection, the average noise for the relevant spin-observable does not
achieve sub-shot-noise precision. Our demonstration implies improved
performance of spin squeezing for applications to quantum metrology.Comment: 8 pages, 5 figure
Abnormal infant islet morphology precedes insulin resistance in PCOS-like monkeys.
Polycystic ovary syndrome (PCOS) is prevalent in reproductive-aged women and confounded by metabolic morbidities, including insulin resistance and type 2 diabetes. Although the etiology of PCOS is undefined, contribution of prenatal androgen (PA) exposure has been proposed in a rhesus monkey model as premenopausal PA female adults have PCOS-like phenotypes in addition to insulin resistance and decreased glucose tolerance. PA female infants exhibit relative hyperinsulinemia, suggesting prenatal sequelae of androgen excess on glucose metabolism and an antecedent to future metabolic disease. We assessed consequences of PA exposure on pancreatic islet morphology to identify evidence of programming on islet development. Islet counts and size were quantified and correlated with data from intravenous glucose tolerance tests (ivGTT) obtained from dams and their offspring. Average islet size was decreased in PA female infants along with corresponding increases in islet number, while islet fractional area was preserved. Infants also demonstrated an increase in both the proliferation marker Ki67 within islets and the beta to alpha cell ratio suggestive of enhanced beta cell expansion. PA adult females have reduced proportion of small islets without changes in proliferative or apoptotic markers, or in beta to alpha cell ratios. Together, these data suggest in utero androgen excess combined with mild maternal glucose intolerance alter infant and adult islet morphology, implicating deviant islet development. Marked infant, but subtle adult, morphological differences provide evidence of islet post-natal plasticity in adapting to changing physiologic demands: from insulin sensitivity and relative hypersecretion to insulin resistance and diminished insulin response to glucose in the mature PCOS-like phenotype
- …
