7,091 research outputs found
Mean field and pairing properties in the crust of neutron stars
Properties of the matter in the inner crust of a neutron star are
investigated in a Hartree-Fock plus BCS approximation employing schematic
effective forces of the type of the Skyrme forces. Special attention is paid to
differences between a homogenous and inhomogeneous description of the matter
distribution. For that purpose self-consistent Hartree Fock calculations are
performed in a spherical Wigner-Seitz cell. The results are compared to
predictions of corresponding Thomas Fermi calculations. The influence of the
shell structure on the formation of pairing correlations in inhomogeneous
matter are discussed.Comment: 11 pages, 9 figure
Drifting diffusion on a circle as continuous limit of a multiurn Ehrenfest model
We study the continuous limit of a multibox Erhenfest urn model proposed
before by the authors. The evolution of the resulting continuous system is
governed by a differential equation, which describes a diffusion process on a
circle with a nonzero drifting velocity. The short time behavior of this
diffusion process is obtained directly by solving the equation, while the long
time behavior is derived using the Poisson summation formula. They reproduce
the previous results in the large (number of boxes) limit. We also discuss
the connection between this diffusion equation and the Schrdinger
equation of some quantum mechanical problems.Comment: 4 pages prevtex4 file, 1 eps figur
Human Resource Development for Health in Indonesia: Challenges of Achieving the Millennium Development Goals
The development of Human Resources for Health (HRH) is one of the keys to achieving The Millennium Development Goals (MDG). Providing and ensuring the best health care service in every region of Indonesia has long been a major concern. Several challenges faced by HRH development are a shortage of professionals, uneven distribution of professionals between regions, a variety of settings (urban and rural), and management of the health workforce under a decentralization system
Contract net protocol for cooperative optimisation and dynamic scheduling of steel production
A STUDY ON THE FUSION REACTION 139La + 12C AT 50 MeV/u WITH THE VUU EQUATION
Recently Bownan et al. found that in the reaction 139La + 12C at 50 MeV/u a compound nucleus is formed. We simulate this reaction with a numerical solution of the VUU equation and indeed find that for a central collision the system fuses and equilibrates after 90 fm/c
An O(N) symmetric extension of the Sine-Gordon Equation
We discuss an O(N) exension of the Sine-Gordon (S-G)equation which allows us
to perform an expansion around the leading order in large-N result using
Path-Integral methods. In leading order we show our methods agree with the
results of a variational calculation at large-N. We discuss the striking
differences for a non-polynomial interaction between the form for the effective
potential in the Gaussian approximation that one obtains at large-N when
compared to the N=1 case. This is in contrast to the case when the classical
potential is a polynomial in the field and no such drastic differences occur.
We find for our large-N extension of the Sine-Gordon model that the unbroken
ground state is unstable as one increases the coupling constant (as it is for
the original S-G equation) and we determine the stability criteria.Comment: 21 pages, Latex (Revtex4) v3:minor grammatical changes and addition
Poincar\'{e} cycle of a multibox Ehrenfest urn model with directed transport
We propose a generalized Ehrenfest urn model of many urns arranged
periodically along a circle. The evolution of the urn model system is governed
by a directed stochastic operation. Method for solving an -ball, -urn
problem of this model is presented. The evolution of the system is studied in
detail. We find that the average number of balls in a certain urn oscillates
several times before it reaches a stationary value. This behavior seems to be a
peculiar feature of this directed urn model. We also calculate the Poincar\'{e}
cycle, i.e., the average time interval required for the system to return to its
initial configuration. The result can be easily understood by counting the
total number of all possible microstates of the system.Comment: 10 pages revtex file with 7 eps figure
A vertical diatomic artificial molecule in the intermediate coupling regime in a parallel and perpendicular magnetic field
We present experimental results for the ground state electrochemical
potentials of a few electron semiconductor artificial molecule made by
vertically coupling two quantum dots, in the intermediate coupling regime, in
perpendicular and parallel magnetic fields up to 5 T. We perform a quantitative
analysis based on local-spin density functional theory. The agreement between
theoretical and experimental results is good, and the phase transitions are
well reproduced.Comment: Typeset using Revtex, 13 pages and 8 Postscript figure
- …
