1,516 research outputs found
Does Luttinger liquid behaviour survive in an atomic wire on a surface?
We form a highly simplified model of an atomic wire on a surface by the
coupling of two one-dimensional chains, one with electron-electron interactions
to represent the wire and and one with no electron-electron interactions to
represent the surface. We use exact diagonalization techniques to calculate the
eigenstates and response functions of our model, in order to determine both the
nature of the coupling and to what extent the coupling affects the Luttinger
liquid properties we would expect in a purely one-dimensional system. We find
that while there are indeed Luttinger liquid indicators present, some residual
Fermi liquid characteristics remain.Comment: 14 pages, 7 figures. Submitted to J Phys
Friedel oscillations in a gas of interacting one-dimensional fermionic atoms confined in a harmonic trap
Using an asymptotic phase representation of the particle density operator
in the one-dimensional harmonic trap, the part which describes the Friedel oscillations is extracted. The
expectation value with respect to the interacting
ground state requires the calculation of the mean square average of a properly
defined phase operator. This calculation is performed analytically for the
Tomonaga-Luttinger model with harmonic confinement. It is found that the
envelope of the Friedel oscillations at zero temperature decays with the
boundary exponent away from the classical boundaries. This
value differs from that known for open boundary conditions or strong pinning
impurities. The soft boundary in the present case thus modifies the decay of
Friedel oscillations. The case of two components is also discussed.Comment: Revised version to appear in Journal of Physics B: Atomic, Molecular
and Optical Physic
Renormalization-group study of a magnetic impurity in a Luttinger liquid
A generalized Anderson model for a magnetic impurity in an interacting
one-dimensional electron gas is studied via a mapping onto a classical Coulomb
gas. For weak potential scattering, the local-moment parameter regime expands
as repulsive bulk interactions become stronger, but the Kondo scale for the
quenching of the impurity moment varies nonmonotonically. There also exist two
regimes dominated by backward potential scattering: one in which the impurity
is nonmagnetic, and another in which an unquenched local moment survives down
to very low temperatures.Comment: REVTeX, 4 pages, 3 epsf-embedded EPS figure
An Exactly Solvable Kondo Problem for Interacting One-Dimensional Fermions
The single impurity Kondo problem in the one-dimensional -potential
Fermi gas is exactly solved for two sets of special coupling constants via
Bethe ansatz. It is found that ferromagnetic Kondo screening does occur in one
case which confirms the Furusaki-Nagaosa conjecture while in the other case it
does not, which we explain in a simple physical picture. The surface energy,
the low temperature specific heat and the Pauli susceptibility induced by the
impurity and thereby the Kondo temperature are derived explicitly.Comment: 8 pages, LATEX, REVTE
Perturbation theory for optical excitations in the one-dimensional extended Peierls--Hubbard model
For the one-dimensional, extended Peierls--Hubbard model we calculate
analytically the ground-state energy and the single-particle gap to second
order in the Coulomb interaction for a given lattice dimerization. The
comparison with numerically exact data from the Density-Matrix Renormalization
Group shows that the ground-state energy is quantitatively reliable for Coulomb
parameters as large as the band width. The single-particle gap can almost
triple from its bare Peierls value before substantial deviations appear. For
the calculation of the dominant optical excitations, we follow two approaches.
In Wannier theory, we perturb the Wannier exciton states to second order. In
two-step perturbation theory, similar in spirit to the GW-BSE approach, we form
excitons from dressed electron-hole excitations. We find the Wannier approach
to be superior to the two-step perturbation theory. For singlet excitons,
Wannier theory is applicable up to Coulomb parameters as large as half band
width. For triplet excitons, second-order perturbation theory quickly fails
completely.Comment: 32 pages, 12 figures, submtted to JSTA
Boundary Effects on Spectral Properties of Interacting Electrons in One Dimension
The single electron Green's function of the one-dimensional
Tomonaga-Luttinger model in the presence of open boundaries is calculated with
bosonization methods. We show that the critical exponents of the local spectral
density and of the momentum distribution change in the presence of a boundary.
The well understood universal bulk behavior always crosses over to a boundary
dominated regime for small energies or small momenta. We show this crossover
explicitly for the large-U Hubbard model in the low-temperature limit.
Consequences for photoemission experiments are discussed.Comment: revised and reformatted paper to appear in Phys. Rev. Lett. (Feb.
1996). 5 pages (revtex) and 3 embedded figures (macro included). A complete
postscript file is available from http://FY.CHALMERS.SE/~eggert/luttinger.ps
or by request from [email protected]
New selection rules for resonant Raman scattering on quantum wires
The bosonisation technique is used to calculate the resonant Raman spectrum
of a quantum wire with two electronic sub-bands occupied. Close to resonance,
the cross section at frequencies in the region of the inter sub-band
transitions shows distinct peaks in parallel polarisation of the incident and
scattered light that are signature of collective higher order spin density
excitations. This is in striking contrast to the conventional selection rule
for non-resonant Raman scattering according to which spin modes can appear only
in perpendicular polarisation. We predict a new selection rule for the
excitations observed near resonance, namely that, apart from charge density
excitations, only spin modes with positive group velocities can appear as peaks
in the spectra in parallel configuration close to resonance. The results are
consistent with all of the presently available experimental data.Comment: 7 pages, 2 figure
Frequency scaling of photo-induced tunneling
The DC current-voltage characteristics, induced by a driving electric field
with frequency Omega, of a one dimensional electron channel with a tunnel
barrier is calculated. Electron-electron interaction of finite-range is taken
into account. For intermediate interaction strengths, the non-linear
differential conductance shows cusp-like minima at bias voltages integer
multiples of hbar Omega / e that are a consequence of the finite non-zero range
of the interaction but are independent of the shape of the driving electric
field. However, the frequency-scaling of the photo-induced current shows a
cross-over between Omega^{-1} and Omega^{-2}, and depends on the spatial shape
of the driving field and the range of the interaction.Comment: 7 pages, EURO-TeX, 3 figures, to appear in Europhysics Letter
How universal is the one-particle Green's function of a Luttinger liquid?
The one-particle Green's function of the Tomonaga-Luttinger model for
one-dimensional interacting Fermions is discussed. Far away from the origin of
the plane of space-time coordinates the function falls off like a power law.
The exponent depends on the direction within the plane. For a certain form of
the interaction potential or within an approximated cut-off procedure the
different exponents only depend on the strength of the interaction at zero
momentum and can be expressed in terms of the Luttinger liquid parameters
and of the model at hand. For a more general
interaction and directions which are determined by the charge velocity
and spin velocity the exponents also depend on the
smoothness of the interaction at zero momentum and the asymptotic behavior of
the Green's function is not given by the Luttinger liquid parameters alone.
This shows that the physics of large space-time distances in Luttinger liquids
is less universal than is widely believed.Comment: 5 pages with 2 figure
- …
