725 research outputs found
WUDAPT: Facilitating advanced urban canopy modeling for weather, climate and air quality applications
Environmental issues and impacts to society will be exacerbated with increased population, diminishing resources and the prospects for extreme weather events and climate changes. Current community-based models available for weather, climate and air quaity applications are powerful state-of-science modeling systems, which, with careful considerations, can be employed to address the impact of these issues fo urban areas. Given the complex and high degree of spatial inhomogeneity of the underlying surface area we will review mesh size, appropriate multi-scale science and morphological descriptions and their data requirements including unique city specific gridded morphology and material composition for their forecasting and climate applications.
For this presentation, we discuss, describe and show examples from an ongoing but preliminary prototypic collaborative effort, whose design bases is to provide the experience and recommendations toward extending the scope of the National Urban Database and Access Portal Tools (NUDAPT) to worldwide coverage (WUDAPT). WUDAPT would thus provide requisite gridded data for urban applications of advanced forecast and climate models throughout the world. Strategically, the prototypic efforts will be designed to provide proven protocols for the facilitaton of the data gathering and processing based on available remote sensing and ground-based sampling. Tactically, we employ an iterative approach first obtaining coarse gridded Local Climate Zone (LCZ) classification derived from available Web-based products such as Google-Earth, and Landsat satellite magery. Further sub-class discretization of LCZs and the application of GeoWiki technology facilitates further refinements and ground truthing to yield the desired gridded building morphological distribution parameters and their material composition. Local experts would be encouraged to become involved to ensure factors unique to their area in the world would be incorporated. Finally, given that model applications may require data with different grid resolution we present an outline that employs the new and powerful Multiple Resolution Analyses scheme that can address this need within the scope of WUDAPT
Intrinsic thermal vibrations of suspended doubly clamped single-wall carbon nanotubes
We report the observation of thermally driven mechanical vibrations of
suspended doubly clamped carbon nanotubes, grown by chemical vapor deposition
(CVD). Several experimental procedures are used to suspend carbon nanotubes.
The vibration is observed as a blurring in images taken with a scanning
electron microscope. The measured vibration amplitudes are compared with a
model based on linear continuum mechanics.Comment: pdf including figures, see:
http://www.unibas.ch/phys-meso/Research/Papers/2003/NT-Thermal-Vibrations.pd
Off-Forward Parton Distributions
Recently, there have been some interesting developments involving off-forward
parton distributions of the nucleon, deeply virtual Compton scattering, and
hard diffractive vector-meson production. These developments are triggered by
the realization that the off-forward distributions contain information about
the internal spin structure of the nucleon and that diffractive
electroproduction of vector mesons depends on these unconventional
distributions. This paper gives a brief overview of the recent developments
Canonical Gravity, Diffeomorphisms and Objective Histories
This paper discusses the implementation of diffeomorphism invariance in
purely Hamiltonian formulations of General Relativity. We observe that, if a
constrained Hamiltonian formulation derives from a manifestly covariant
Lagrangian, the diffeomorphism invariance of the Lagrangian results in the
following properties of the constrained Hamiltonian theory: the diffeomorphisms
are generated by constraints on the phase space so that a) The algebra of the
generators reflects the algebra of the diffeomorphism group. b) The Poisson
brackets of the basic fields with the generators reflects the space-time
transformation properties of these basic fields. This suggests that in a purely
Hamiltonian approach the requirement of diffeomorphism invariance should be
interpreted to include b) and not just a) as one might naively suppose. Giving
up b) amounts to giving up objective histories, even at the classical level.
This observation has implications for Loop Quantum Gravity which are spelled
out in a companion paper. We also describe an analogy between canonical gravity
and Relativistic particle dynamics to illustrate our main point.Comment: Latex 16 Pages, no figures, revised in the light of referees'
comments, accepted for publication in Classical and Quantum Gravit
Multi-field Inflation with a Random Potential
Motivated by the possibility of inflation in the cosmic landscape, which may
be approximated by a complicated potential, we study the density perturbations
in multi-field inflation with a random potential. The random potential causes
the inflaton to undergo a Brownian motion with a drift in the D-dimensional
field space. To quantify such an effect, we employ a stochastic approach to
evaluate the two-point and three-point functions of primordial perturbations.
We find that in the weakly random scenario the resulting power spectrum
resembles that of the single field slow-roll case, with up to 2% more red tilt.
The strongly random scenario, leads to rich phenomenologies, such as primordial
fluctuations in the power spectrum on all angular scales. Such features may
already be hiding in the error bars of observed CMB TT (as well as TE and EE)
power spectrum and can be detected or falsified with more data coming in the
future. The tensor power spectrum itself is free of fluctuations and the tensor
to scalar ratio is enhanced. In addition a large negative running of the power
spectral index is possible. Non-Gaussianity is generically suppressed by the
growth of adiabatic perturbations on super-horizon scales, but can possibly be
enhanced by resonant effects or arise from the entropic perturbations during
the onset of (p)reheating. The formalism developed in this paper can be applied
to a wide class of multi-field inflation models including, e.g. the N-flation
scenario.Comment: More clarifications and references adde
Non-Perturbative Corrections and Modularity in N=1 Type IIB Compactifications
Non-perturbative corrections and modular properties of four-dimensional type
IIB Calabi-Yau orientifolds are discussed. It is shown that certain
non-perturbative alpha' corrections survive in the large volume limit of the
orientifold and periodically correct the Kahler potential. These corrections
depend on the NS-NS two form and have to be completed by D-instanton
contributions to transform covariantely under symmetries of the type IIB
orientifold background. It is shown that generically also the D-instanton
superpotential depends on the two-form moduli as well as on the complex
dilaton. These contributions can arise through theta-functions with the dilaton
as modular parameter. An orientifold of the Enriques Calabi-Yau allows to
illustrate these general considerations. It is shown that this compactification
leads to a controlled four-dimensional N=1 effective theory due to the absence
of various quantum corrections. Making contact to the underlying topological
string theory the D-instanton superpotential is proposed to be related to a
specific modular form counting D3, D1, D(-1) degeneracies on the Enriques
Calabi-Yau.Comment: 35 page
PPPC 4 DM ID: A Poor Particle Physicist Cookbook for Dark Matter Indirect Detection
We provide ingredients and recipes for computing signals of TeV-scale Dark
Matter annihilations and decays in the Galaxy and beyond. For each DM channel,
we present the energy spectra of electrons and positrons, antiprotons,
antideuterons, gamma rays, neutrinos and antineutrinos e, mu, tau at
production, computed by high-statistics simulations. We estimate the Monte
Carlo uncertainty by comparing the results yielded by the Pythia and Herwig
event generators. We then provide the propagation functions for charged
particles in the Galaxy, for several DM distribution profiles and sets of
propagation parameters. Propagation of electrons and positrons is performed
with an improved semi-analytic method that takes into account
position-dependent energy losses in the Milky Way. Using such propagation
functions, we compute the energy spectra of electrons and positrons,
antiprotons and antideuterons at the location of the Earth. We then present the
gamma ray fluxes, both from prompt emission and from Inverse Compton scattering
in the galactic halo. Finally, we provide the spectra of extragalactic gamma
rays. All results are available in numerical form and ready to be consumed.Comment: 57 pages with many figures and tables. v4: updated to include a 125
higgs boson, computation and discussion of extragalactic spectra corrected,
some other typos fixed; all these corrections and updates are reflected on
the numerical ingredients available at
http://www.marcocirelli.net/PPPC4DMID.html they correspond to Release 2.
Direct, Indirect and Collider Detection of Neutralino Dark Matter In SUSY Models with Non-universal Higgs Masses
In supersymmetric models with gravity-mediated SUSY breaking, universality of
soft SUSY breaking sfermion masses m_0 is motivated by the need to suppress
unwanted flavor changing processes. The same motivation, however, does not
apply to soft breaking Higgs masses, which may in general have independent
masses from matter scalars at the GUT scale. We explore phenomenological
implications of both the one-parameter and two-parameter non-universal Higgs
mass models (NUHM1 and NUHM2), and examine the parameter ranges compatible with
Omega_CDM h^2, BF(b --> s,gamma) and (g-2)_mu constraints. In contrast to the
mSUGRA model, in both NUHM1 and NUHM2 models, the dark matter A-annihilation
funnel can be reached at low values of tan(beta), while the higgsino dark
matter annihilation regions can be reached for low values of m_0. We show that
there may be observable rates for indirect and direct detection of neutralino
cold dark matter in phenomenologically aceptable ranges of parameter space. We
also examine implications of the NUHM models for the Fermilab Tevatron, the
CERN LHC and a Sqrt(s)=0.5-1 TeV e+e- linear collider. Novel possibilities
include: very light s-top_R, s-charm_R squark and slepton_L masses as well as
light charginos and neutralinos and H, A and H^+/- Higgs bosons.Comment: LaTeX, 48pages, 26 Figures. The version with high resolution Figures
is available at http://hep.pa.msu.edu/belyaev/public/projects/nuhm/nuhm.p
Uplifting and Inflation with D3 Branes
Back-reaction effects can modify the dynamics of mobile D3 branes moving
within type IIB vacua, in a way which has recently become calculable. We
identify some of the ways these effects can alter inflationary scenarios, with
the following three results: (1) By examining how the forces on the brane due
to moduli-stabilizing interactions modify the angular motion of D3 branes
moving in Klebanov-Strassler type throats, we show how previous slow-roll
analyses can remain unchanged for some brane trajectories, while being modified
for other trajectories. These forces cause the D3 brane to sink to the bottom
of the throat except in a narrow region close to the D7 brane, and do not
ameliorate the \eta-problem of slow roll inflation in these throats; (2) We
argue that a recently-proposed back-reaction on the dilaton field can be used
to provide an alternative way of uplifting these compactifications to Minkowski
or De Sitter vacua, without the need for a supersymmetry-breaking anti-D3
brane; and (3) by including also the D-term forces which arise when
supersymmetry-breaking fluxes are included on D7 branes we identify the 4D
supergravity interactions which capture the dynamics of D3 motion in D3/D7
inflationary scenarios. The form of these potentials sheds some light on recent
discussions of how symmetries constrain D term interactions in the low-energy
theory.Comment: JHEP.cls, 35 pages, 3 .eps figure
Breakdown of universality in multi-cut matrix models
We solve the puzzle of the disagreement between orthogonal polynomials
methods and mean field calculations for random NxN matrices with a disconnected
eigenvalue support. We show that the difference does not stem from a Z2
symmetry breaking, but from the discreteness of the number of eigenvalues. This
leads to additional terms (quasiperiodic in N) which must be added to the naive
mean field expressions. Our result invalidates the existence of a smooth
topological large N expansion and some postulated universality properties of
correlators. We derive the large N expansion of the free energy for the general
2-cut case. From it we rederive by a direct and easy mean-field-like method the
2-point correlators and the asymptotic orthogonal polynomials. We extend our
results to any number of cuts and to non-real potentials.Comment: 35 pages, Latex (1 file) + 3 figures (3 .eps files), revised to take
into account a few reference
- …
