332 research outputs found
Infrared Spectroscopy of Molecular Supernova Remnants
We present Infrared Space Observatory spectroscopy of sites in the supernova
remnants W28, W44, and 3C391, where blast waves are impacting molecular clouds.
Atomic fine-structure lines were detected from C, N, O, Si, P, and Fe. The S(3)
and S(9) lines of H2 were detected for all three remnants. The observations
require both shocks into gas with moderate (~ 100 /cm3) and high (~10,000 /cm3)
pre-shock densities, with the moderate density shocks producing the ionic lines
and the high density shock producing the molecular lines. No single shock model
can account for all of the observed lines, even at the order of magnitude
level. We find that the principal coolants of radiative supernova shocks in
moderate-density gas are the far-infrared continuum from dust grains surviving
the shock, followed by collisionally-excited [O I] 63.2 and [Si II] 34.8 micron
lines. The principal coolant of the high-density shocks is
collisionally-excited H2 rotational and ro-vibrational line emission. We
systematically examine the ground-state fine structure of all cosmically
abundant elements, to explain the presence or lack of all atomic fine lines in
our spectra in terms of the atomic structure, interstellar abundances, and a
moderate-density, partially-ionized plasma. The [P II] line at 60.6 microns is
the first known astronomical detection. There is one bright unidentified line
in our spectra, at 74.26 microns. The presence of bright [Si II] and [Fe II]
lines requires partial destruction of the dust. The required gas-phase
abundance of Fe suggests 15-30% of the Fe-bearing grains were destroyed. The
infrared continuum brightness requires ~1 Msun of dust survives the shock,
suggesting about 1/3 of the dust mass was destroyed, in agreement with the
depletion estimate and with theoretical models for dust destruction.Comment: 40 pages; 10 figures; accepted by ApJ July 11, 200
Genetic diversity, linkage disequilibrium and power of a large grapevine (Vitis vinifera L) diversity panel newly designed for association studies
UMR-AGAP Equipe DAVV (Diversité, adaptation et amélioration de la vigne) ; équipe ID (Intégration de Données)International audienceAbstractBackgroundAs for many crops, new high-quality grapevine varieties requiring less pesticide and adapted to climate change are needed. In perennial species, breeding is a long process which can be speeded up by gaining knowledge about quantitative trait loci linked to agronomic traits variation. However, due to the long juvenile period of these species, establishing numerous highly recombinant populations for high resolution mapping is both costly and time-consuming. Genome wide association studies in germplasm panels is an alternative method of choice, since it allows identifying the main quantitative trait loci with high resolution by exploiting past recombination events between cultivars. Such studies require adequate panel design to represent most of the available genetic and phenotypic diversity. Assessing linkage disequilibrium extent and panel power is also needed to determine the marker density required for association studies.ResultsStarting from the largest grapevine collection worldwide maintained in Vassal (France), we designed a diversity panel of 279 cultivars with limited relatedness, reflecting the low structuration in three genetic pools resulting from different uses (table vs wine) and geographical origin (East vs West), and including the major founders of modern cultivars. With 20 simple sequence repeat markers and five quantitative traits, we showed that our panel adequately captured most of the genetic and phenotypic diversity existing within the entire Vassal collection. To assess linkage disequilibrium extent and panel power, we genotyped single nucleotide polymorphisms: 372 over four genomic regions and 129 distributed over the whole genome. Linkage disequilibrium, measured by correlation corrected for kinship, reached 0.2 for a physical distance between 9 and 458 Kb depending on genetic pool and genomic region, with varying size of linkage disequilibrium blocks. This panel achieved reasonable power to detect associations between traits with high broad-sense heritability (> 0.7) and causal loci with intermediate allelic frequency and strong effect (explaining > 10 % of total variance).ConclusionsOur association panel constitutes a new, highly valuable resource for genetic association studies in grapevine, and deserves dissemination to diverse field and greenhouse trials to gain more insight into the genetic control of many agronomic traits and their interaction with the environment
Erratum to: 36th International Symposium on Intensive Care and Emergency Medicine
[This corrects the article DOI: 10.1186/s13054-016-1208-6.]
The serotonin-N-acetylserotonin–melatonin pathway as a biomarker for autism spectrum disorders
Elevated whole-blood serotonin and decreased plasma melatonin (a circadian synchronizer hormone that derives from serotonin) have been reported independently in patients with autism spectrum disorders (ASDs). Here, we explored, in parallel, serotonin, melatonin and the intermediate N-acetylserotonin (NAS) in a large cohort of patients with ASD and their relatives. We then investigated the clinical correlates of these biochemical parameters. Whole-blood serotonin, platelet NAS and plasma melatonin were assessed in 278 patients with ASD, their 506 first-degree relatives (129 unaffected siblings, 199 mothers and 178 fathers) and 416 sex- and age-matched controls. We confirmed the previously reported hyperserotonemia in ASD (40% (35–46%) of patients), as well as the deficit in melatonin (51% (45–57%)), taking as a threshold the 95th or 5th percentile of the control group, respectively. In addition, this study reveals an increase of NAS (47% (41–54%) of patients) in platelets, pointing to a disruption of the serotonin-NAS–melatonin pathway in ASD. Biochemical impairments were also observed in the first-degree relatives of patients. A score combining impairments of serotonin, NAS and melatonin distinguished between patients and controls with a sensitivity of 80% and a specificity of 85%. In patients the melatonin deficit was only significantly associated with insomnia. Impairments of melatonin synthesis in ASD may be linked with decreased 14-3-3 proteins. Although ASDs are highly heterogeneous, disruption of the serotonin-NAS–melatonin pathway is a very frequent trait in patients and may represent a useful biomarker for a large subgroup of individuals with ASD
Questions for biotechs: REIVAC.
journal article2011 FebimportedCorrection appears in Human Vaccines 7-9 news:
list of the REIVAC network members: for the REIVAC network (Nathalie Colin de Verdière (Hôpital Saint-Louis, Paris), Claudre Dubray (CIC P501, Clermont-Ferrand), Xavier Duval (CIC P007, Hôpital Bichat, Paris), Florence Galtier (CIC P1001, Montpellier), Catherine Goujon (Lyon), Fabrice Laine (CIC P0203, Rennes), Odile Launay (CIC BT505, Hôpital Cochin, Paris), Christian Libersa (CIC P9301, Lille), Frédéric Lucht (CIC CIE3, Saint-Etienne), Catherine Mutter (CIC P2, Strasbourg), Deborah Postil (CIC P0801, Limoges)
Vesicle miR-195 derived from endothelial cells inhibits expression of serotonin transporter in vessel smooth muscle cells
Serotonin or 5-hydroxytryptamine (5-HT) has been shown to be essential in lots of physiological and pathological processes. It is well known that 5-HT and 5-HT transporter (5-HTT) play important roles in the pulmonary artery in pulmonary hypertension. However, little is known about the function of 5-HTT in other arteries. In this study we found that the expression of 5-HTT was elevated in injured carotid arteries and over-expression of 5-HTT induced proliferation of smooth muscle cells (SMCs); however, this phenotype could be reversed by knocking-down of 5-HTT or endothelial cells conditional medium (EC-CM). A 5-HTT inhibitor, fluoxetine, treated animals also exhibited reduced restenosis after injury. We identified that miR-195 was packaged in the extracellular vesicles from EC-CM. We further confirmed that extracellular vesicles could transfer miR-195 from ECs to SMCs to inhibit the expression of 5-HTT in SMCs and the proliferation of SMCs. These results provide the first evidence that ECs communicate with SMCs via micro-RNA195 in the regulation of the proliferation of SMCs through 5-HTT, which will contribute to a better understanding of communications between ECs and SMCs via micro-RNA. Our findings suggest a potential target for the control of vessel restenosis
A novel molecular dynamics approach to evaluate the effect of phosphorylation on multimeric protein interface: the αB-Crystallin case study
Trazodone regulates neurotrophic/growth factors, mitogen-activated protein kinases and lactate release in human primary astrocytes
Background: In the central nervous system, glial cells provide metabolic and trophic support to neurons and respond to protracted stress and insults by up-regulating inflammatory processes. Reactive astrocytes and microglia are associated with the pathophysiology of neuronal injury, neurodegenerative diseases and major depression, in both animal models and human brains. Several studies have reported clear anti-inflammatory effects of anti-depressant treatment on astrocytes, especially in models of neurological disorders. Trazodone (TDZ) is a triazolopyridine derivative that is structurally unrelated to other major classes of antidepressants. Although the molecular mechanisms of TDZ in neurons have been investigated, it is unclear whether astrocytes are also a TDZ target. Methods: The effects of TDZ on human astrocytes were investigated in physiological conditions and following inflammatory insult with lipopolysaccharide (LPS) and tumour necrosis factor-aα (TNF-aα). Astrocytes were assessed for their responses to pro-inflammatory mediators and cytokines, and the receptors and signalling pathways involved in TDZ-mediated effects were evaluated. Results: TDZ had no effect on cell proliferation, but it decreased pro-inflammatory mediator release and modulated trophic and transcription factor mRNA expression. Following TDZ treatment, the AKT pathway was activated, whereas extracellular signal-regulated kinase and c-Jun NH2-terminal kinase were inhibited. Most importantly, a 72-h TDZ pre-treatment before inflammatory insult completely reversed the anti-proliferative effects induced by LPS-TNF-aα. The expression or the activity of inflammatory mediators, including interleukin-6, c-Jun NH2-terminal kinase and nuclear factor ΚB, were also reduced. Furthermore, TDZ affected astrocyte metabolic support to neurons by counteracting the inflammation-mediated lactate decrease. Finally, TDZ protected neuronal-like cells against neurotoxicity mediated by activated astrocytes. These effects mainly involved an activation of 5-HT1A and an antagonism at 5-HT2A/C serotonin receptors. Fluoxetine, used in parallel, showed similar final effects nevertheless it activates different receptors/intracellular pathways. Conclusions: Altogether, our results demonstrated that TDZ directly acts on astrocytes by regulating intracellular signalling pathways and increasing specific astrocyte-derived neurotrophic factor expression and lactate release. TDZ may contribute to neuronal support by normalizing trophic and metabolic support during neuroinflammation, which is associated with neurological diseases, including major depression
Low incidence of SARS-CoV-2, risk factors of mortality and the course of illness in the French national cohort of dialysis patients
Histaminergic system in brain disorders: lessons from the translational approach and future perspectives
Histamine and its receptors were first described as part of immune and gastrointestinal systems, but their presence in the central nervous system and importance in behavior are gaining more attention. The histaminergic system modulates different processes including wakefulness, feeding, and learning and memory consolidation. Histamine receptors (H1R, H2R, H3R, and H4R) belong to the rhodopsin-like family of G protein-coupled receptors, present constitutive activity, and are subjected to inverse agonist action. The involvement of the histaminergic system in brain disorders, such as Alzheimer’s disease, schizophrenia, sleep disorders, drug dependence, and Parkinson’s disease, is largely studied. Data obtained from preclinical studies point antagonists of histamine receptors as promising alternatives to treat brain disorders. Thus, clinical trials are currently ongoing to assess the effects of these drugs on humans. This review summarizes the role of histaminergic system in brain disorders, as well as the effects of different histamine antagonists on animal models and humans
- …
