56 research outputs found
Making Black Holes in Supernovae
The possibility of making stellar mass black holes in supernovae that
otherwise produce viable Type II and Ib supernova explosions is discussed and
estimates given of their number in the Milky Way Galaxy. Observational
diagnostics of stellar mass black hole formation are reviewed. While the
equation of state sets the critical mass, fall back during the explosion is an
equally important (and uncertain) element in determining if a black hole is
formed. SN 1987A may or may not harbor a black hole, but if the critical mass
for neutron stars is 1.5 - 1.6 M\sun, as Brown and Bethe suggest, it probably
does. Observations alone do not yet resolve the issue. Reasons for this state
of ambiguity are discussed and suggestions given as to how gamma-ray and x-ray
observations in the future might help.Comment: 14 pages, uuencoded gzipped postscript, Accepted Nuclear Physics A,
Gerry Brown Festschrift contributio
Model Flames in the Boussinesq Limit: The Effects of Feedback
We have studied the fully nonlinear behavior of pre-mixed flames in a
gravitationally stratified medium, subject to the Boussinesq approximation. Key
results include the establishment of criterion for when such flames propagate
as simple planar flames; elucidation of scaling laws for the effective flame
speed; and a study of the stability properties of these flames. The simplicity
of some of our scalings results suggests that analytical work may further
advance our understandings of buoyant flames.Comment: 11 pages, 14 figures, RevTex, gzipped tar fil
Neutrinos from Beta Processes in a Presupernova:Probing the Isotopic Evolution of a Massive Star
Stochastic background of gravitational waves
A continuous stochastic background of gravitational waves (GWs) for burst
sources is produced if the mean time interval between the occurrence of bursts
is smaller than the average time duration of a single burst at the emission,
i.e., the so called duty cycle must be greater than one. To evaluate the
background of GWs produced by an ensemble of sources, during their formation,
for example, one needs to know the average energy flux emitted during the
formation of a single object and the formation rate of such objects as well. In
many cases the energy flux emitted during an event of production of GWs is not
known in detail, only characteristic values for the dimensionless amplitude and
frequencies are known. Here we present a shortcut to calculate stochastic
backgrounds of GWs produced from cosmological sources. For this approach it is
not necessary to know in detail the energy flux emitted at each frequency.
Knowing the characteristic values for the ``lumped'' dimensionless amplitude
and frequency we show that it is possible to calculate the stochastic
background of GWs produced by an ensemble of sources.Comment: 6 pages, 4 eps figures, (Revtex) Latex. Physical Review D (in press
Can a supernova be located by its neutrinos?
A future core-collapse supernova in our Galaxy will be detected by several
neutrino detectors around the world. The neutrinos escape from the supernova
core over several seconds from the time of collapse, unlike the electromagnetic
radiation, emitted from the envelope, which is delayed by a time of order
hours. In addition, the electromagnetic radiation can be obscured by dust in
the intervening interstellar space. The question therefore arises whether a
supernova can be located by its neutrinos alone. The early warning of a
supernova and its location might allow greatly improved astronomical
observations. The theme of the present work is a careful and realistic
assessment of this question, taking into account the statistical significance
of the various neutrino signals. Not surprisingly, neutrino-electron forward
scattering leads to a good determination of the supernova direction, even in
the presence of the large and nearly isotropic background from other reactions.
Even with the most pessimistic background assumptions, SuperKamiokande (SK) and
the Sudbury Neutrino Observatory (SNO) can restrict the supernova direction to
be within circles of radius and , respectively. Other
reactions with more events but weaker angular dependence are much less useful
for locating the supernova. Finally, there is the oft-discussed possibility of
triangulation, i.e., determination of the supernova direction based on an
arrival time delay between different detectors. Given the expected statistics
we show that, contrary to previous estimates, this technique does not allow a
good determination of the supernova direction.Comment: 11 pages including 2 figures. Revised version corrects typos, adds
some brief comment
The neutron capture process in the He shell in core-collapse supernovae: Presolar silicon carbide grains as a diagnostic tool for nuclear astrophysics
Carbon-rich presolar grains are found in primitive meteorites, with isotopic measurements to date suggesting a core-collapse supernovae origin site for some of them. This holds for about 1-2 % of presolar silicon carbide (SiC) grains, so-called Type X and C grains, and about 30 % of presolar graphite grains. Presolar SiC grains of Type X show anomalous isotopic signatures for several elements heavier than iron compared to the solar abundances: most notably for strontium, zirconium, molybdenum, ruthenium and barium. We study the nucleosynthesis of zirconium and molybdenum isotopes in the He-shell of three core-collapse supernovae models of 15, 20 and 25 M☉ with solar metallicity, and compare the results to measurements of presolar grains. We find the stellar models show a large scatter of isotopic abundances for zirconium and molybdenum, but the mass averaged abundances are qualitatively similar to the measurements. We find all models show an excess of 96Zr relative to the measurements, but the model abundances are affected by the fractionation between Sr and Zr since a large contribution to 90Zr is due to the radiogenic decay of 90Sr. Some supernova models show excesses of 95,97Mo and depletion of 96Mo relative to solar. The mass averaged distribution from these models shows an excess of 100Mo, but this may be alleviated by very recent neutron-capture cross section measurements. We encourage future explorations to assess the impact of the uncertainties in key neutron-capture reaction rates that lie along the n-process path
Supernova Neutrinos, Neutrino Oscillations, and the Mass of the Progenitor Star
We investigate the initial progenitor mass dependence of the early-phase
neutrino signal from supernovae taking neutrino oscillations into account. The
early-phase analysis has advantages in that it is not affected by the time
evolution of the density structure of the star due to shock propagation or
whether the remnant is a neutron star or a black hole. The initial mass affects
the evolution of the massive star and its presupernova structure, which is
important for two reasons when considering the neutrino signal. First, the
density profile of the mantle affects the dynamics of neutrino oscillation in
supernova. Second, the final iron core structure determines the features of the
neutrino burst, i.e., the luminosity and the average energy. We find that both
effects are rather small. This is desirable when we try to extract information
on neutrino parameters from future supernova-neutrino observations. Although
the uncertainty due to the progenitor mass is not small for intermediate
(), we
can, nevertheless, determine the character of the mass hierarchy and whether
is very large or very small.Comment: 8 pages, 15 figure
Statistical methods for thermonuclear reaction rates and nucleosynthesis simulations
Rigorous statistical methods for estimating thermonuclear reaction rates and nucleosynthesis are becoming increasingly established in nuclear astrophysics. The main challenge being faced is that experimental reaction rates are highly complex quantities derived from a multitude of different measured nuclear parameters (e.g., astrophysical S-factors, resonance energies and strengths, particle and γ-ray partial widths). We discuss the application of the Monte Carlo method to two distinct, but related, questions. First, given a set of measured nuclear parameters, how can one best estimate the resulting thermonuclear reaction rates and associated uncertainties? Second, given a set of appropriate reaction rates, how can one best estimate the abundances from nucleosynthesis (i.e., reaction network) calculations? The techniques described here provide probability density functions that can be used to derive statistically meaningful reaction rates and final abundances for any desired coverage probability. Examples are given for applications to s-process neutron sources, core-collapse supernovae, classical novae, and Big Bang nucleosynthesis
- …
