1,881 research outputs found
Passive scalar decay in chaotic flows with boundaries
Journal ArticleThis paper considers the long-time decay rate of a passive scalar in twodimensional flow. The focus is on the effects of boundary conditions for kinematically prescribed velocity fields with random or periodic time dependence. Scalar evolution is followed numerically in a periodic geometry for families of flows that have either a slip or a no-slip boundary condition on a square or plane layer subdomain D. The boundary conditions on the passive scalar are imposed on the boundary of D by restricting to a subclass invariant under certain symmetry transformations. The scalar field obeys constant (Dirichlet) or no-flux (Neumann) conditions exactly for a flow with the slip boundary condition and approximately in the no-slip case. At late times the decay of a passive scalar is exponential in time with a decay rate γ (κ), where κ is the molecular diffusivity. Scaling laws of the form γ(κ) ζ C κ α for small κ are obtained numerically for a variety of boundary conditions on flow and scalar, and supporting theoretical arguments are presented. In particular when the scalar field satisfies a Neumann condition on all boundaries, α ζ 0 0 for a slip flow condition; for a no-slip condition we confirm results in the literature that α ζ 1/2 for a plane layer, but find α ζ 2/3 in a square subdomain D where the decay is controlled by stagnant flow in the corners. For cases where there is a Dirichlet boundary condition on one or more sides of the subdomain D, the exponent measuring the decay of the scalar field is α ζ 1/2 for a slip flow condition and α ζ 3/4 for a no-slip condition. The scaling law exponents α for chaotic time-periodic flows are compared with those for similarly constructed random flows. © 2012 The Japan Society of Fluid Mechanics and IOP Publishing Ltd.Libyan Governmen
Can Image Enhancement Allow Radiation Dose to Be Reduced Whilst Maintaining the Perceived Diagnostic Image Quality Required for Coronary Angiography?
Objectives: The aim of this research was to quantify the reduction in radiation dose facilitated by image processing alone for percutaneous coronary intervention (PCI) patient angiograms, without reducing the perceived image quality required to confidently make a diagnosis. Methods: Incremental amounts of image noise were added to five PCI angiograms, simulating the angiogram as having been acquired at corresponding lower dose levels (10-89% dose reduction). Sixteen observers with relevant experience scored the image quality of these angiograms in three states - with no image processing and with two different modern image processing algorithms applied. These algorithms are used on state-of-the-art and previous generation cardiac interventional X-ray systems. Ordinal regression allowing for random effects and the delta method were used to quantify the dose reduction possible by the processing algorithms, for equivalent image quality scores. Results: Observers rated the quality of the images processed with the state-of-the-art and previous generation image processing with a 24.9% and 15.6% dose reduction respectively as equivalent in quality to the unenhanced images. The dose reduction facilitated by the state-of-the-art image processing relative to previous generation processing was 10.3%. Conclusions: Results demonstrate that statistically significant dose reduction can be facilitated with no loss in perceived image quality using modern image enhancement; the most recent processing algorithm was more effective in preserving image quality at lower doses. Advances in knowledge: Image enhancement was shown to maintain perceived image quality in coronary angiography at a reduced level of radiation dose using computer software to produce synthetic images from real angiograms simulating a reduction in dose
Screening for coping style increases the power of gene expression studies
Background: Individuals of many vertebrate species show different stress coping styles and these have a striking influence on how gene expression shifts in response to a variety of challenges. Principal Findings: This is clearly illustrated by a study in which common carp displaying behavioural predictors of different coping styles (characterised by a proactive, adrenaline-based or a reactive, cortisol-based response) were subjected to inflammatory challenge and specific gene transcripts measured in individual brains. Proactive and reactive fish differed in baseline gene expression and also showed diametrically opposite responses to the challenge for 80% of the genes investigated. Significance: Incorporating coping style as an explanatory variable can account for some the unexplained variation that is common in gene expression studies, can uncover important effects that would otherwise have passed unnoticed and greatly enhances the interpretive value of gene expression data
Consumption of cocoa flavanols results in acute improvements in mood and cognitive performance during sustained mental effort
Cocoa flavanols (CF) positively influence physiological processes in ways that suggest their consumption may improve aspects of cognitive function. This study investigated the acute cognitive and subjective effects of CF consumption during sustained mental demand. In this randomized, controlled, double-blinded, balanced, three period crossover trial 30 healthy adults consumed drinks containing 520 mg, 994 mg CF and a matched control, with a three-day washout between drinks. Assessments included the state anxiety inventory and repeated 10-min cycles of a Cognitive Demand Battery comprising of two serial subtraction tasks (Serial Threes and Serial Sevens), a Rapid Visual Information Processing (RVIP) task and a mental fatigue scale, over the course of 1 h. Consumption of both 520 mg and 994 mg CF significantly improved Serial Threes performance. The 994 mg CF beverage significantly speeded RVIP responses but also resulted in more errors during Serial Sevens. Increases in self-reported mental fatigue were significantly attenuated by the consumption of the 520 mg CF beverage only. This is the first report of acute cognitive improvements following CF consumption in healthy adults. While the mechanisms underlying the effects are unknown they may be related to known effects of CF on endothelial function and blood flow
Integrating personality research and animal contest theory: aggressiveness in the green swordtail <i>Xiphophorus helleri</i>
<p>Aggression occurs when individuals compete over limiting resources. While theoretical studies have long placed a strong emphasis on context-specificity of aggression, there is increasing recognition that consistent behavioural differences exist among individuals, and that aggressiveness may be an important component of individual personality. Though empirical studies tend to focus on one aspect or the other, we suggest there is merit in modelling both within-and among-individual variation in agonistic behaviour simultaneously. Here, we demonstrate how this can be achieved using multivariate linear mixed effect models. Using data from repeated mirror trials and dyadic interactions of male green swordtails, <i>Xiphophorus helleri</i>, we show repeatable components of (co)variation in a suite of agonistic behaviour that is broadly consistent with a major axis of variation in aggressiveness. We also show that observed focal behaviour is dependent on opponent effects, which can themselves be repeatable but were more generally found to be context specific. In particular, our models show that within-individual variation in agonistic behaviour is explained, at least in part, by the relative size of a live opponent as predicted by contest theory. Finally, we suggest several additional applications of the multivariate models demonstrated here. These include testing the recently queried functional equivalence of alternative experimental approaches, (e. g., mirror trials, dyadic interaction tests) for assaying individual aggressiveness.</p>
Phylogeography of Japanese encephalitis virus:genotype is associated with climate
The circulation of vector-borne zoonotic viruses is largely determined by the overlap in the geographical distributions of virus-competent vectors and reservoir hosts. What is less clear are the factors influencing the distribution of virus-specific lineages. Japanese encephalitis virus (JEV) is the most important etiologic agent of epidemic encephalitis worldwide, and is primarily maintained between vertebrate reservoir hosts (avian and swine) and culicine mosquitoes. There are five genotypes of JEV: GI-V. In recent years, GI has displaced GIII as the dominant JEV genotype and GV has re-emerged after almost 60 years of undetected virus circulation. JEV is found throughout most of Asia, extending from maritime Siberia in the north to Australia in the south, and as far as Pakistan to the west and Saipan to the east. Transmission of JEV in temperate zones is epidemic with the majority of cases occurring in summer months, while transmission in tropical zones is endemic and occurs year-round at lower rates. To test the hypothesis that viruses circulating in these two geographical zones are genetically distinct, we applied Bayesian phylogeographic, categorical data analysis and phylogeny-trait association test techniques to the largest JEV dataset compiled to date, representing the envelope (E) gene of 487 isolates collected from 12 countries over 75 years. We demonstrated that GIII and the recently emerged GI-b are temperate genotypes likely maintained year-round in northern latitudes, while GI-a and GII are tropical genotypes likely maintained primarily through mosquito-avian and mosquito-swine transmission cycles. This study represents a new paradigm directly linking viral molecular evolution and climate
A comprehensive analysis of prognostic signatures reveals the high predictive capacity of the proliferation, immune response and RNA splicing modules in breast cancer.
INTRODUCTION: Several gene expression signatures have been proposed and demonstrated to be predictive of outcome in breast cancer. In the present article we address the following issues: Do these signatures perform similarly? Are there (common) molecular processes reported by these signatures? Can better prognostic predictors be constructed based on these identified molecular processes? METHODS: We performed a comprehensive analysis of the performance of nine gene expression signatures on seven different breast cancer datasets. To better characterize the functional processes associated with these signatures, we enlarged each signature by including all probes with a significant correlation to at least one of the genes in the original signature. The enrichment of functional groups was assessed using four ontology databases. RESULTS: The classification performance of the nine gene expression signatures is very similar in terms of assigning a sample to either a poor outcome group or a good outcome group. Nevertheless the concordance in classification at the sample level is low, with only 50% of the breast cancer samples classified in the same outcome group by all classifiers. The predictive accuracy decreases with the number of poor outcome assignments given to a sample. The best classification performance was obtained for the group of patients with only good outcome assignments. Enrichment analysis of the enlarged signatures revealed 11 functional modules with prognostic ability. The combination of the RNA-splicing and immune modules resulted in a classifier with high prognostic performance on an independent validation set. CONCLUSIONS: The study revealed that the nine signatures perform similarly but exhibit a large degree of discordance in prognostic group assignment. Functional analyses indicate that proliferation is a common cellular process, but that other functional categories are also enriched and show independent prognostic ability. We provide new evidence of the potentially promising prognostic impact of immunity and RNA-splicing processes in breast cancer.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
Two chemically similar stellar overdensities on opposite sides of the plane of the Galaxy
Our Galaxy is thought to have undergone an active evolutionary history
dominated by star formation, the accretion of cold gas, and, in particular,
mergers up to 10 gigayear ago. The stellar halo reveals rich fossil evidence of
these interactions in the form of stellar streams, substructures, and
chemically distinct stellar components. The impact of dwarf galaxy mergers on
the content and morphology of the Galactic disk is still being explored. Recent
studies have identified kinematically distinct stellar substructures and moving
groups, which may have extragalactic origin. However, there is mounting
evidence that stellar overdensities at the outer disk/halo interface could have
been caused by the interaction of a dwarf galaxy with the disk. Here we report
detailed spectroscopic analysis of 14 stars drawn from two stellar
overdensities, each lying about 5 kiloparsecs above and below the Galactic
plane - locations suggestive of association with the stellar halo. However, we
find that the chemical compositions of these stars are almost identical, both
within and between these groups, and closely match the abundance patterns of
the Milky Way disk stars. This study hence provides compelling evidence that
these stars originate from the disk and the overdensities they are part of were
created by tidal interactions of the disk with passing or merging dwarf
galaxies.Comment: accepted for publication in Natur
Carbon sequestration in the deep Atlantic enhanced by Saharan dust
Enhanced atmospheric input of dust-borne nutrients and minerals to the remote surface ocean can potentially increase carbon uptake and sequestration at depth. Nutrients can enhance primary productivity, and mineral particles act as ballast, increasing sinking rates of particulate organic matter. Here we present a two-year time series of sediment trap observations of particulate organic carbon flux to 3,000 m depth, measured directly in two locations: the dust-rich central North Atlantic gyre and the dust-poor South Atlantic gyre. We find that carbon fluxes are twice as high and a higher proportion of primary production is exported to depth in the dust-rich North Atlantic gyre. Low stable nitrogen isotope ratios suggest that high fluxes result from the stimulation of nitrogen fixation and productivity following the deposition of dust-borne nutrients. Sediment traps in the northern gyre also collected intact colonies of nitrogen-fixing Trichodesmium species. Whereas ballast in the southern gyre is predominantly biogenic, dust-derived mineral particles constitute the dominant ballast element during the enhanced carbon fluxes in the northern gyre. We conclude that dust deposition increases carbon sequestration in the North Atlantic gyre through the fertilization of the nitrogen-fixing community in surface waters and mineral ballasting of sinking particles
- …
