35 research outputs found
Repertoire, Genealogy and Genomic Organization of Cruzipain and Homologous Genes in Trypanosoma cruzi, T. cruzi-Like and Other Trypanosome Species
Trypanosoma cruzi, the agent of Chagas disease, is a complex of genetically diverse isolates highly phylogenetically related to T. cruzi-like species, Trypanosoma cruzi marinkellei and Trypanosoma dionisii, all sharing morphology of blood and culture forms and development within cells. However, they differ in hosts, vectors and pathogenicity: T. cruzi is a human pathogen infective to virtually all mammals whilst the other two species are non-pathogenic and bat restricted. Previous studies suggest that variations in expression levels and genetic diversity of cruzipain, the major isoform of cathepsin L-like (CATL) enzymes of T. cruzi, correlate with levels of cellular invasion, differentiation, virulence and pathogenicity of distinct strains. In this study, we compared 80 sequences of genes encoding cruzipain from 25 T. cruzi isolates representative of all discrete typing units (DTUs TcI-TcVI) and the new genotype Tcbat and 10 sequences of homologous genes from other species. The catalytic domain repertoires diverged according to DTUs and trypanosome species. Relatively homogeneous sequences are found within and among isolates of the same DTU except TcV and TcVI, which displayed sequences unique or identical to those of TcII and TcIII, supporting their origin from the hybridization between these two DTUs. In network genealogies, sequences from T. cruzi clustered tightly together and closer to T. c. marinkellei than to T. dionisii and largely differed from homologues of T. rangeli and T. b. brucei. Here, analysis of isolates representative of the overall biological and genetic diversity of T. cruzi and closest T. cruzi-like species evidenced DTU- and species-specific polymorphisms corroborating phylogenetic relationships inferred with other genes. Comparison of both phylogenetically close and distant trypanosomes is valuable to understand host-parasite interactions, virulence and pathogenicity. Our findings corroborate cruzipain as valuable target for drugs, vaccine, diagnostic and genotyping approaches
Genome of Rhodnius prolixus, an insect vector of Chagas disease, reveals unique adaptations to hematophagy and parasite infection
Rhodnius prolixus not only has served as a model organism for the study of insect physiology, but also is a major vector of Chagas disease, an illness that affects approximately seven million people worldwide. We sequenced the genome of R. prolixus, generated assembled sequences covering 95% of the genome ( approximately 702 Mb), including 15,456 putative protein-coding genes, and completed comprehensive genomic analyses of this obligate blood-feeding insect. Although immune-deficiency (IMD)-mediated immune responses were observed, R. prolixus putatively lacks key components of the IMD pathway, suggesting a reorganization of the canonical immune signaling network. Although both Toll and IMD effectors controlled intestinal microbiota, neither affected Trypanosoma cruzi, the causal agent of Chagas disease, implying the existence of evasion or tolerance mechanisms. R. prolixus has experienced an extensive loss of selenoprotein genes, with its repertoire reduced to only two proteins, one of which is a selenocysteine-based glutathione peroxidase, the first found in insects. The genome contained actively transcribed, horizontally transferred genes from Wolbachia sp., which showed evidence of codon use evolution toward the insect use pattern. Comparative protein analyses revealed many lineage-specific expansions and putative gene absences in R. prolixus, including tandem expansions of genes related to chemoreception, feeding, and digestion that possibly contributed to the evolution of a blood-feeding lifestyle. The genome assembly and these associated analyses provide critical information on the physiology and evolution of this important vector species and should be instrumental for the development of innovative disease control methods
Contribuição dos fatores de risco psicossociais para o transtorno de déficit de atenção/hiperatividade
Expression of calpain-like proteins and effects of calpain inhibitors on the growth rate of Angomonas deanei wild type and aposymbiotic strains
The ubiquitous gp63-like metalloprotease from lower trypanosomatids: in the search for a function
Computing leastcore allocations for firm-energy rights: A Mixed Integer Programming procedure
Colonization of Aedes aegypti midgut by the endosymbiont-bearing trypanosomatid Blastocrithidia culicis
Monoxenous trypanosomatids inhabit invertebrate hosts throughout their life cycle. However, there have been cases of HIV-positive patients who have presented opportunistic infections caused by these protozoa, offering new perspectives to the study of interactions between monoxenics and hematophagous insect vectors. Some monoxenous trypanosomatids present a symbiotic bacterium in the cytoplasm, which seems to promote biochemical and morphological changes in the host trypanosomatids, such as alterations in plasma membrane carbohydrates and the reduction of the paraxial rod. In this work, we investigated the colonization of Aedes aegypti with Blastocrithidia culicis, an endosymbiont-bearing trypanosomatid. B. culicis remained in the insect digestive tract for 38 days after feeding. Optical microscopy analysis revealed an infection process characterized by a homogenous distribution of the trypanosomatid along the midgut epithelium; no preferential interaction of protozoa with any cell type was observed. Ultrastructural analysis showed that during the colonization process, trypanosomatids interacted mainly with midgut cells through their flagellum, which penetrates the microvilli preferentially near the tight junctions. Prolonged infections promoted insect midgut degradation, culminating with the arrival of protozoa in the hemocel. By demonstrating B. culicis colonization in a bloodsucking insect, we suggest that vector transmission of monoxenous trypanosomatids to vertebrate host may occur in nature.2025-01-0
Handling separable non-convexities using disjunctive cuts
International audienceD'Ambrosio, Lee, and Wächter (2009, 2012) introduced an algorithmic approach for handling separable non-convexities in the context of global optimization. That algorithmic framework calculates lower bounds (on the optimal min objective value) by solving a sequence of convex MINLPs. We propose a method for addressing the same setting, but employing disjunctive cuts (generated via LP), and solving instead a sequence of convex NLPs. We present computational results which demonstrate the viability of our approach
