2,498 research outputs found
Meiotic DSB patterning: A multifaceted process
Meiosis is a specialized two-step cell division responsible for genome haploidization and the generation of genetic diversity during gametogenesis. An integral and distinctive feature of the meiotic program is the evolutionarily conserved initiation of homologous recombination (HR) by the developmentally programmed induction of DNA double-strand breaks (DSBs). The inherently dangerous but essential act of DSB formation is subject to multiple forms of stringent and self-corrective regulation that collectively ensure fruitful and appropriate levels of genetic exchange without risk to cellular survival. Within this article we focus upon an emerging element of this control—spatial regulation—detailing recent advances made in understanding how DSBs are evenly distributed across the genome, and present a unified view of the underlying patterning mechanisms employed
Tumor cyclooxygenase-2 levels correlate with tumor invasiveness in human hepatocellular carcinoma
Aim: Recent studies suggested that cyclooxygenase-2 (COX-2) enhances tumor angiogenesis via upregulation of vascular endothelial growth factor (VEGF). Although COX-2 expression has been demonstrated in hepatocellular carcinoma (HCC), the significance of COX-2 in progression of HCC remains unclear. This study evaluated the clinicopathological correlation of COX-2 level and its relationship with VEGF level in HCC. Methods: Fresh tumor tissues were obtained from 100 patients who underwent resection of HCC. COX-2 protein expression was examined by immunohistochemistry, and quantitatively by an enzyme immunometric assay (EIA) of tumor cytosolic COX-2 levels. Tumor cytosolic VEGF levels were measured by an ELISA. Results: Immunostaining showed expression of COX-2 in tumor cells. Tumor cytosolic COX-2 levels correlated with VEGF levels (r = 0.469, P<0.001). Correlation with clinicopathological features showed significantly higher tumor cytosolic COX-2 levels in the presence of multiple tumors (P = 0.027), venous invasion (P = 0.030), microsatellite lesions (P = 0.037) and advanced tumor stage (P = 0.008). Higher tumor cytosolic COX-2 levels were associated with worse patient survival. Conclusion: This study shows that elevated tumor COX-2 levels correlate with elevated VEGF levels and invasiveness in HCC, suggesting that COX-2 plays a significant role in the progression of HCC. © 2005 The WJG Press and Elsevier Inc. All rights reserved.published_or_final_versio
Posterior Reversible Encephalopathy Syndrome: paediatric heart transplant with cyclosporine neurotoxicity
Posters: no. P8Posterior reversible encephalopathy syndrome (PRES) is associated with a specific disorder of cerebrovascular autoregulation. Clinical features of PRES consisted of headache, decreased consciousness, altered mental functioning, seizures, visual loss or cortical blindness. Characteristic findings on neuroimaging included high signal intensity on T2-weighted as well as diffusion-weighted imaging MRI in the posterior cerebral hemispheres, indicative of vasogenic subcortical oedema without infarction. Cyclosporine neurotoxicity had been described following bone marrow and organ transplantation; however, there are few reports of PRES in children especially post-paediatric heart transplantation. We report a case of cyclosporine-related PRES in a paediatric heart transplant recipient. She made a good recovery with no residual neurological deficits after withdrawal of cyclosporine, control of possible risk factors as well as symptomatic control of seizure.published_or_final_versionThe 1st Hong Kong Neurological Congress cum 22nd Annual Scientific Meeting of the Hong Kong Neurological Society, Hong Kong, 6-8 November 2009. In Hong Kong Medical Journal, 2009, v. 15 n. 6, suppl. 7, p. 42, abstract P
Recommended from our members
Error, reproducibility and sensitivity : a pipeline for data processing of Agilent oligonucleotide expression arrays
Background
Expression microarrays are increasingly used to obtain large scale transcriptomic information on a wide range of biological samples. Nevertheless, there is still much debate on the best ways to process data, to design experiments and analyse the output. Furthermore, many of the more sophisticated mathematical approaches to data analysis in the literature remain inaccessible to much of the biological research community. In this study we examine ways of extracting and analysing a large data set obtained using the Agilent long oligonucleotide transcriptomics platform, applied to a set of human macrophage and dendritic cell samples.
Results
We describe and validate a series of data extraction, transformation and normalisation steps which are implemented via a new R function. Analysis of replicate normalised reference data demonstrate that intrarray variability is small (only around 2% of the mean log signal), while interarray variability from replicate array measurements has a standard deviation (SD) of around 0.5 log2 units ( 6% of mean). The common practise of working with ratios of Cy5/Cy3 signal offers little further improvement in terms of reducing error. Comparison to expression data obtained using Arabidopsis samples demonstrates that the large number of genes in each sample showing a low level of transcription reflect the real complexity of the cellular transcriptome. Multidimensional scaling is used to show that the processed data identifies an underlying structure which reflect some of the key biological variables which define the data set. This structure is robust, allowing reliable comparison of samples collected over a number of years and collected by a variety of operators.
Conclusions
This study outlines a robust and easily implemented pipeline for extracting, transforming normalising and visualising transcriptomic array data from Agilent expression platform. The analysis is used to obtain quantitative estimates of the SD arising from experimental (non biological) intra- and interarray variability, and for a lower threshold for determining whether an individual gene is expressed. The study provides a reliable basis for further more extensive studies of the systems biology of eukaryotic cells
Static non-reciprocity in mechanical metamaterials
Reciprocity is a fundamental principle governing various physical systems,
which ensures that the transfer function between any two points in space is
identical, regardless of geometrical or material asymmetries. Breaking this
transmission symmetry offers enhanced control over signal transport, isolation
and source protection. So far, devices that break reciprocity have been mostly
considered in dynamic systems, for electromagnetic, acoustic and mechanical
wave propagation associated with spatio-temporal variations. Here we show that
it is possible to strongly break reciprocity in static systems, realizing
mechanical metamaterials that, by combining large nonlinearities with suitable
geometrical asymmetries, and possibly topological features, exhibit vastly
different output displacements under excitation from different sides, as well
as one-way displacement amplification. In addition to extending non-reciprocity
and isolation to statics, our work sheds new light on the understanding of
energy propagation in non-linear materials with asymmetric crystalline
structures and topological properties, opening avenues for energy absorption,
conversion and harvesting, soft robotics, prosthetics and optomechanics.Comment: 19 pages, 3 figures, Supplementary information (11 pages and 5
figures
Genome-wide linkage analysis of 972 bipolar pedigrees using single-nucleotide polymorphisms.
Because of the high costs associated with ascertainment of families, most linkage studies of Bipolar I disorder (BPI) have used relatively small samples. Moreover, the genetic information content reported in most studies has been less than 0.6. Although microsatellite markers spaced every 10 cM typically extract most of the genetic information content for larger multiplex families, they can be less informative for smaller pedigrees especially for affected sib pair kindreds. For these reasons we collaborated to pool family resources and carried out higher density genotyping. Approximately 1100 pedigrees of European ancestry were initially selected for study and were genotyped by the Center for Inherited Disease Research using the Illumina Linkage Panel 12 set of 6090 single-nucleotide polymorphisms. Of the ~1100 families, 972 were informative for further analyses, and mean information content was 0.86 after pruning for linkage disequilibrium. The 972 kindreds include 2284 cases of BPI disorder, 498 individuals with bipolar II disorder (BPII) and 702 subjects with recurrent major depression. Three affection status models (ASMs) were considered: ASM1 (BPI and schizoaffective disorder, BP cases (SABP) only), ASM2 (ASM1 cases plus BPII) and ASM3 (ASM2 cases plus recurrent major depression). Both parametric and non-parametric linkage methods were carried out. The strongest findings occurred at 6q21 (non-parametric pairs LOD 3.4 for rs1046943 at 119 cM) and 9q21 (non-parametric pairs logarithm of odds (LOD) 3.4 for rs722642 at 78 cM) using only BPI and schizoaffective (SA), BP cases. Both results met genome-wide significant criteria, although neither was significant after correction for multiple analyses. We also inspected parametric scores for the larger multiplex families to identify possible rare susceptibility loci. In this analysis, we observed 59 parametric LODs of 2 or greater, many of which are likely to be close to maximum possible scores. Although some linkage findings may be false positives, the results could help prioritize the search for rare variants using whole exome or genome sequencing
Recommended from our members
Production of π0 and η mesons in Cu+Au collisions at sNN =200 GeV
Production of π0 and η mesons has been measured at midrapidity in Cu+Au collisions at sNN=200GeV. Measurements were performed in π0(η)→γγ decay channel in the 1(2)-20GeV/c transverse momentum range. A strong suppression is observed for π0 and η meson production at high transverse momentum in central Cu+Au collisions relative to the p+p results scaled by the number of nucleon-nucleon collisions. In central collisions the suppression is similar to Au+Au with comparable nuclear overlap. The η/π0 ratio measured as a function of transverse momentum is consistent with mT-scaling parametrization down to pT=2GeV/c, its asymptotic value is constant and consistent with Au+Au and p+p and does not show any significant dependence on collision centrality. Similar results were obtained in hadron-hadron, hadron-nucleus, and nucleus-nucleus collisions as well as in e+e- collisions in a range of collision energies sNN=3-1800 GeV. This suggests that the quark-gluon-plasma medium produced in Cu+Cu collisions either does not affect the jet fragmentation into light mesons or it affects the π0 and η the same way
Pixel and Voxel Representations of Graphs
We study contact representations for graphs, which we call pixel
representations in 2D and voxel representations in 3D. Our representations are
based on the unit square grid whose cells we call pixels in 2D and voxels in
3D. Two pixels are adjacent if they share an edge, two voxels if they share a
face. We call a connected set of pixels or voxels a blob. Given a graph, we
represent its vertices by disjoint blobs such that two blobs contain adjacent
pixels or voxels if and only if the corresponding vertices are adjacent. We are
interested in the size of a representation, which is the number of pixels or
voxels it consists of.
We first show that finding minimum-size representations is NP-complete. Then,
we bound representation sizes needed for certain graph classes. In 2D, we show
that, for -outerplanar graphs with vertices, pixels are
always sufficient and sometimes necessary. In particular, outerplanar graphs
can be represented with a linear number of pixels, whereas general planar
graphs sometimes need a quadratic number. In 3D, voxels are
always sufficient and sometimes necessary for any -vertex graph. We improve
this bound to for graphs of treewidth and to
for graphs of genus . In particular, planar graphs
admit representations with voxels
An improved parameter estimation and comparison for soft tissue constitutive models containing an exponential function
Motivated by the well-known result that stiffness of soft tissue is proportional to the stress, many of the constitutive laws for soft tissues contain an exponential function. In this work, we analyze properties of the exponential function and how it affects the estimation and comparison of elastic parameters for soft tissues. In particular, we find that as a consequence of the exponential function there are lines of high covariance in the elastic parameter space. As a result, one can have widely varying mechanical parameters defining the tissue stiffness but similar effective stress–strain responses. Drawing from elementary algebra, we propose simple changes in the norm and the parameter space, which significantly improve the convergence of parameter estimation and robustness in the presence of noise. More importantly, we demonstrate that these changes improve the conditioning of the problem and provide a more robust solution in the case of heterogeneous material by reducing the chances of getting trapped in a local minima. Based upon the new insight, we also propose a transformed parameter space which will allow for rational parameter comparison and avoid misleading conclusions regarding soft tissue mechanics
- …
