7,834 research outputs found

    MONOLITH: a high resolution neutrino oscillation experiment

    Get PDF
    MONOLITH is a proposed massive magnetized tracking calorimeter at the Gran Sasso laboratory in Italy, optimized for the detection of atmospheric muon neutrinos. The main goal is to test the neutrino oscillation hypothesis through an explicit observation of the full first oscillation swing. The sensitivity range for this measurement comfortably covers the entire Super-Kamiokande allowed region. Other measurements include studies of matter effects, the NC/CC and neutrino/anti-neutrino ratio with atmospheric neutrinos and auxiliary measurements from the CERN to Gran Sasso neutrino beam. Depending on approval, data taking with part of the detector could start in 2005. The MONOLITH detector and its performance are described.Comment: 8 pages, contribution to Les rencontres de Physique de la Vallee d'Aoste, March 200

    On particle production for high energy neutrino beams

    Get PDF
    Analytical formulae for the calculation of secondary particle yields in p-A interactions are given. These formulae can be of great practical importance for fast calculations of neutrino fluxes and for designing new neutrino beam-lines. The formulae are based on a parameterization of the inclusive invariant cross sections for secondary particle production measured in p-Be interactions. Data collected in different energy ranges and kinematic regions are used. The accuracy of the fit to the data with the empirical formulae adopted is within the experimental uncertainties. Prescriptions to extrapolate this parameterization to finite targets and to targets of different materials are given. The results obtained are then used as an input for the simulation of neutrino beams. We show that our approach describes well the main characteristics of measured neutrino spectra at CERN. Thus it may be used in fast simulations aiming at the optimisation of the proposed long-baseline neutrino beams at CERN and FNAL. In particular we will show our predictions for the CNGS beam from CERN to Gran Sasso.Comment: 18 pages, 10 figures. Submitted to The European Physics Journal

    Response of microchannel plates to single particles and to electromagnetic showers

    Get PDF
    We report on the response of microchannel plates (MCPs) to single relativistic particles and to electromagnetic showers. Particle detection by means of secondary emission of electrons at the MCP surface has long been proposed and is used extensively in ion time-of-flight mass spectrometers. What has not been investigated in depth is their use to detect the ionizing component of showers. The time resolution of MCPs exceeds anything that has been previously used in calorimeters and, if exploited effectively, could aid in the event reconstruction at high luminosity colliders. Several prototypes of photodetectors with the amplification stage based on MCPs were exposed to cosmic rays and to 491 MeV electrons at the INFN-LNF Beam-Test Facility. The time resolution and the efficiency of the MCPs are measured as a function of the particle multiplicity, and the results used to model the response to high-energy showers.Comment: Paper submitted to NIM

    Neutrino hierarchy from CP-blind observables with high density magnetized detectors

    Get PDF
    High density magnetized detectors are well suited to exploit the outstanding purity and intensities of novel neutrino sources like Neutrino Factories and Beta Beams. They can also provide independent measurements of leptonic mixing parameters through the observation of atmospheric muon-neutrinos. In this paper, we discuss the combination of these observables from a multi-kton iron detector and a high energy Beta Beam; in particular, we demonstrate that even with moderate detector granularities the neutrino mass hierarchy can be determined for θ13\theta_{13} values greater than 4^\circ.Comment: 16 pages, 7 figures. Added a new section discussing systematic errors (sec 5.2); sec.5.1 and 4 have been extended. Version to appear in EPJ

    Performance of a Tungsten-Cerium Fluoride Sampling Calorimeter in High-Energy Electron Beam Tests

    Full text link
    A prototype for a sampling calorimeter made out of cerium fluoride crystals interleaved with tungsten plates, and read out by wavelength-shifting fibres, has been exposed to beams of electrons with energies between 20 and 150 GeV, produced by the CERN Super Proton Synchrotron accelerator complex. The performance of the prototype is presented and compared to that of a Geant4 simulation of the apparatus. Particular emphasis is given to the response uniformity across the channel front face, and to the prototype's energy resolution.Comment: 6 pages, 6 figures, Submitted to NIM

    Three-Neutrino Oscillations of Atmospheric Neutrinos, theta13, Neutrino Mass Hierarchy and Iron Magnetized Detectors

    Full text link
    We derive predictions for the Nadir angle (theta_n) dependence of the ratio Nmu-/Nmu+ of the rates of the mu- and mu+ multi-GeV events, and for the mu- - mu+ event rate asymmetry, A_{mu-mu+}=[Nmu- - Nmu+]/[Nmu- + Nmu+], in iron-magnetized calorimeter detectors (MINOS, INO) in the case of 3-neutrino oscillations of the atmospheric nu_mu and antinu_mu, driven by one neutrino mass squared difference, |Delta m^2_{31}| >> Delta m^2_{21}. The asymmetry A_{mu- mu+} (the ratio Nmu-/Nmu+) is shown to be particularly sensitive to the Earth matter effects in the atmospheric neutrino oscillations, and thus to the values of sin^2(theta13) and sin^2(theta23), theta13 and theta23 being the neutrino mixing angles limited by the CHOOZ and Palo Verde experiments and that responsible for the dominant atmospheric nu_mu -> nu_tau (antinu_mu -> antinu_tau) oscillations. It is also very sensitive to the type of neutrino mass spectrum which can be with normal (Delta m^2_{31}>0) or with inverted (Delta m^2_{31} 0.50, sin^2(2 theta13)>0.06 and Delta m^2_{31}=(2-3) 10^{-3} eV^2, the Earth matter effects produce a relative difference between the integrated asymmetries barA_{mu- mu+} and barA^{2nu}_{mu- mu+}$ in the mantle (cos(theta_n)=0.30-0.84) and core (cos(theta_n)=0.84-1.0) bins, which is bigger in absolute value than ~15%, can reach the values of (30-35)%, and thus can be sufficiently large to be observable. The sign of the indicated asymmetry difference is anticorrelated with the sign of Delta m^2_{31}. An observation of the Earth matter effects in the Nadir angle distribution of the asymmetry A_{mu- mu+} (ratio Nmu-/Nmu+) would clearly indicate that sin^2(2 theta13)>0.06 and sin^2(theta23)>0.50, and would lead to the determination of the sign of Delta m^2_{31}.Comment: 27 pages, 9 figure

    A Beta Beam complex based on the machine upgrades for the LHC

    Get PDF
    The Beta Beam CERN design is based on the present LHC injection complex and its physics reach is mainly limited by the maximum rigidity of the SPS. In fact, some of the scenarios for the machine upgrades of the LHC, particularly the construction of a fast cycling 1 TeV injector (``Super-SPS''), are very synergic with the construction of a higher γ\gamma Beta Beam. At the energies that can be reached by this machine, we demonstrate that dense calorimeters can already be used for the detection of ν\nu at the far location. Even at moderate masses (40 kton) as the ones imposed by the use of existing underground halls at Gran Sasso, the CP reach is very large for any value of θ13\theta_{13} that would provide evidence of νe\nu_e appearance at T2K or NOν\nuA (θ133\theta_{13}\geq 3^\circ). Exploitation of matter effects at the CERN to Gran Sasso distance provides sensitivity to the neutrino mass hierarchy in significant areas of the θ13δ\theta_{13}-\delta plane

    Prospects for the Precision Measurement of the W Mass with the CMS Detector at the LHC

    Get PDF
    The precise measurement of the mass of the W boson constitutes an important consistency check of the Standard Model and is sensitive to supersymmetric corrections. Together with the top quark mass, the W mass discriminates between the Standard Model and supersymmetric extensions. In this note, methods are presented which employ the large number of Z bosons produced at the LHC to significantly reduce theoretical and experimental uncertainties on the W mass measurement. A precision of about 40 MeV (20 MeV) with the first 1 fb^-1 (10 fb^-1) of integrated luminosity during the low luminosity run of the LHC is expected
    corecore