2,120 research outputs found
Changes in BMI before and during economic development and subsequent risk of cardiovascular disease and total mortality: A 35-year follow-up study in China
postprin
Day-Night Differences, Seasonal Variations and Source Apportionment of PM10-Bound PAHs over Xi’an, Northwest China
Scans for signatures of selection in Russian cattle breed genomes reveal new candidate genes for environmental adaptation and acclimation
Domestication and selective breeding has resulted in over 1000 extant cattle breeds. Many of these breeds do not excel in important traits but are adapted to local environments. These adaptations are a valuable source of genetic material for efforts to improve commercial breeds. As a step toward this goal we identified candidate regions to be under selection in genomes of nine Russian native cattle breeds adapted to survive in harsh climates. After comparing our data to other breeds of European and Asian origins we found known and novel candidate genes that could potentially be related to domestication, economically important traits and environmental adaptations in cattle. The Russian cattle breed genomes contained regions under putative selection with genes that may be related to adaptations to harsh environments (e.g., AQP5, RAD50, and RETREG1). We found genomic signatures of selective sweeps near key genes related to economically important traits, such as the milk production (e.g., DGAT1, ABCG2), growth (e.g., XKR4), and reproduction (e.g., CSF2). Our data point to candidate genes which should be included in future studies attempting to identify genes to improve the extant breeds and facilitate generation of commercial breeds that fit better into the environments of Russia and other countries with similar climates
Cellulase recycling in biorefineriesis : is it possible?
On a near future, bio-based economy will assume a key role in our lives. Lignocellulosic materials (e.g., agroforestry residues, industrial/solid wastes) represent a cheaper and environmentally friendly option to fossil fuels. Indeed, following suitable processing, they can be metabolized by different microorganisms to produce a wide range of compounds currently obtained by chemical synthesis. However, due to the recalcitrant nature of these materials, they cannot be directly used by microorganisms, the conversion of polysaccharides into simpler sugars being thus required. This conversion, which is usually undertaken enzymatically, represents a significant part on the final cost of the process. This fact has driven intense efforts on the reduction of the enzyme cost following different strategies. Here, we describe the fundamentals of the enzyme recycling technology, more specifically, cellulase recycling. We focus on the main strategies available for the recovery of both the liquid- and solid-bound enzyme fractions and discuss the relevant operational parameters (e.g., composition, temperature, additives, and pH). Although the efforts from the industry and enzyme suppliers are primarily oriented toward the development of enzyme cocktails able to quickly and effectively process biomass, it seems clear by now that enzyme recycling is technically possible.Financial support from FEDER and Fundação para a Ciência e a Tecnologia (FCT):
GlycoCBMs Project PTDC/AGR-FOR/3090/2012–FCOMP-01-0124-
FEDER-027948 and Strategic Project PEst-OE/EQB/LA0023/2013, Project
BBioInd-Biotechnology and Bioengineering for improved Industrial
and Agro-Food processes, REF. NORTE-07-0124-FEDER-000028 Cofunded
by the Programa Operacional Regional do Norte (ON.2–O Novo
Norte), QREN, FEDER and the PhD grant to DG (SFRH/BD/88623/
2012) and ACR (SFRH/BD/89547/2012)
Proteolysis of the endothelial cell protein C receptor by neutrophil proteinase 3
BACKGROUND: The endothelial cell protein C receptor (EPCR) presents protein C to the thrombin:thrombomodulin complex on the endothelium of large vessels, and enhances the generation of activated protein C (APC) and activation of protease-activated receptor-1. A previous report has demonstrated binding of soluble (s) EPCR to activated neutrophils via surface proteinase 3 (PR3). METHODS: We now report further characterization of this interaction. Activated neutrophils and purified PR3 both decrease endothelial cell (EC) surface EPCR, suggestive of its proteolysis. RESULTS: When added to purified recombinant sEPCR, PR3 produced multiple cleavages, with early products including 20 kDa N-terminal and C-terminal (after Lys(176)) fragments. The binding of active site blocked PR3 to sEPCR was studied by surface plasmon resonance. Estimates of the K(D) of 18.5–102 nm were obtained with heterogeneous binding, suggestive of more than a single interaction site. CONCLUSIONS: This work demonstrates PR3 binding to and proteolysis of EPCR and suggests a mechanism by which anticoagulant and cell protective pathways can be down-regulated during inflammation
Spanish Mediterranean diet and other dietary patterns and breast cancer risk: case–control EpiGEICAM study
Background:Although there are solid findings regarding the detrimental effect of alcohol consumption, the existing evidence on the effect of other dietary factors on breast cancer (BC) risk is inconclusive. This study aimed to evaluate the association between dietary patterns and risk of BC in Spanish women, stratifying by menopausal status and tumour subtype, and to compare the results with those of Alternate Healthy Index (AHEI) and Alternate Mediterranean Diet Score (aMED).Methods:We recruited 1017 incident BC cases and 1017 matched healthy controls of similar age (±5 years) without a history of BC. The association between ‘a priori' and ‘a posteriori' developed dietary patterns and BC in general and according to menopausal status and intrinsic tumour subtypes (ER+/PR+ and HER2− HER2+ and ER−/PR− and HER2−) was evaluated using logistic and multinomial regression models.Results:Adherence to the Western dietary pattern was related to higher risk of BC (OR for the top vs the bottom quartile 1.46 (95% CI 1.06–2.01)), especially in premenopausal women (OR=1.75; 95% CI 1.14–2.67). In contrast, the Mediterranean pattern was related to a lower risk (OR for the top quartile vs the bottom quartile 0.56 (95% CI 0.40–0.79)). Although the deleterious effect of the Western pattern was similarly observed in all tumour subtypes, the protective effect of our Mediterranean pattern was stronger for triple-negative tumours (OR=0.32; 95% CI 0.15–0.66 and Pheterogeneity=0.04). No association was found between adherence to the Prudent pattern and BC risk. The associations between ‘a priori' indices and BC risk were less marked (OR for the top vs the bottom quartile of AHEI=0.69; 95% CI 0.51–0.94 and aMED=0.74; 95% CI 0.46–1.18)).Conclusions:Our results confirm the harmful effect of a Western diet on BC risk, and add new evidence on the benefits of a diet rich in fruits, vegetables, legumes, oily fish and vegetable oils for preventing all BC subtypes, and particularly triple-negative tumours
Recommended from our members
Energy compensation following consumption of sugar-reduced products: a randomized controlled trial
PURPOSE:
Consumption of sugar-reformulated products (commercially available foods and beverages that have been reduced in sugar content through reformulation) is a potential strategy for lowering sugar intake at a population level. The impact of sugar-reformulated products on body weight, energy balance (EB) dynamics and cardiovascular disease risk indicators has yet to be established. The REFORMulated foods (REFORM) study examined the impact of an 8-week sugar-reformulated product exchange on body weight, EB dynamics, blood pressure, arterial stiffness, glycemia and lipemia.
METHODS:
A randomized, controlled, double-blind, crossover dietary intervention study was performed with fifty healthy normal to overweight men and women (age 32.0 ± 9.8 year, BMI 23.5 ± 3.0 kg/m2) who were randomly assigned to consume either regular sugar or sugar-reduced foods and beverages for 8 weeks, separated by 4-week washout period. Body weight, energy intake (EI), energy expenditure and vascular markers were assessed at baseline and after both interventions.
RESULTS:
We found that carbohydrate (P < 0.001), total sugars (P < 0.001) and non-milk extrinsic sugars (P < 0.001) (% EI) were lower, whereas fat (P = 0.001) and protein (P = 0.038) intakes (% EI) were higher on the sugar-reduced than the regular diet. No effects on body weight, blood pressure, arterial stiffness, fasting glycemia or lipemia were observed.
CONCLUSIONS:
Consumption of sugar-reduced products, as part of a blinded dietary exchange for an 8-week period, resulted in a significant reduction in sugar intake. Body weight did not change significantly, which we propose was due to energy compensation
Vps13-like proteins provide phosphatidylethanolamine for GPI anchor synthesis in the ER
Glycosylphosphatidylinositol (GPI) is a glycolipid membrane anchor found on surface proteins in all eukaryotes. It is synthesized in the ER membrane. Each GPI anchor requires three molecules of ethanolamine phosphate (P-Etn), which are derived from phosphatidylethanolamine (PE). We found that efficient GPI anchor synthesis in Saccharomyces cerevisiae requires Csf1; cells lacking Csf1 accumulate GPI precursors lacking P-Etn. Structure predictions suggest Csf1 is a tube-forming lipid transport protein like Vps13. Csf1 is found at contact sites between the ER and other organelles. It interacts with the ER protein Mcd4, an enzyme that adds P-Etn to nascent GPI anchors, suggesting Csf1 channels PE to Mcd4 in the ER at contact sites to support GPI anchor biosynthesis. CSF1 has orthologues in Caenorhabditis elegans (lpd-3) and humans (KIAA1109/TWEEK); mutations in KIAA1109 cause the autosomal recessive neurodevelopmental disorder Alkuraya-Kučinskas syndrome. Knockout of lpd-3 and knockdown of KIAA1109 reduced GPI-anchored proteins on the surface of cells, suggesting Csf1 orthologues in human cells support GPI anchor biosynthesis
Study of hadronic event-shape variables in multijet final states in pp collisions at √s=7 TeV
Peer reviewe
Recommended from our members
Milk and dairy consumption and risk of cardiovascular diseases and all-cause mortality: dose-response meta-analysis of prospective cohort studies
With a growing number of prospective cohort studies, an updated dose-response meta-analysis of milk and dairy products with all-cause mortality, coronary heart disease (CHD) or cardiovascular disease (CVD) have been conducted. PubMed, Embase and Scopus were searched for articles published up to September 2016. Random-effect meta-analyses with summarised dose-response data were performed for total (high-fat/low-fat) dairy, milk, fermented dairy, cheese and yogurt. Non-linear associations were investigated using the spine models and heterogeneity by subgroup analyses. A total of 29 cohort studies were available for meta-analysis, with 938,465 participants and 93,158 mortality, 28,419 CHD and 25,416 CVD cases. No associations were found for total (high-fat/low-fat) dairy, and milk with the health outcomes of mortality, CHD or CVD. Inverse associations were found between total fermented dairy (included sour milk products, cheese or yogurt; per 20 g/day) with mortality (RR 0.98, 95% CI 0.97-0.99; I2 = 94.4%) and CVD risk (RR 0.98, 95% CI 0.97-0.99; I2 = 87.5%). Further analyses of individual fermented dairy of cheese and yogurt showed cheese to have a 2% lower risk of CVD (RR 0.98, 95% CI 0.95-1.00; I2 = 82.6%) per 10 g/day, but not yogurt. All of these marginally inverse associations of totally fermented dairy and cheese were attenuated in sensitivity analyses by removing one large Swedish study. This meta-analysis combining data from 29 prospective cohort studies demonstrated neutral associations between dairy products and cardiovascular and all-cause mortality. For future studies it is important to investigate in more detail how dairy products can be replaced by other foods
- …
