13 research outputs found

    Evaluating HBsAg rapid test performance for different biological samples from low and high infection rate settings & populations

    Full text link
    BACKGROUND: Rapid tests (RTs) might have several advantages over standard laboratory procedures, increasing access to diagnosis, especially among vulnerable populations and/or those living in remote areas. The aim of this study was to evaluate the performance of RTs for the detection of hepatitis B virus surface antigen (HBsAg) in samples from different populations/settings. METHODS: Three RTs for HBsAg detection (Vikia® HBsAg, HBsAg Teste Rápido®, and Imuno-Rápido HBsAg®) and different biological specimens (serum, whole blood, and saliva) were evaluated. Analyses comprised a reference panel and samples from field studies targeting suspected cases of hepatitis B virus (HBV) (G I), individuals living in deprived areas (G II), and highly vulnerable individuals (G III). Enzyme immunoassay (EIA) was defined as the gold standard in this study. Reproducibility, repeatability, and cross-reactivity with other infectious agents such as dengue, immunodeficiency (HIV), and hepatitis C (HCV) viruses and T. pallidum were determined. RESULTS: For the reference panel, the sensitivity and specificity of all HBsAg RTs were higher than 93.00 %. G I presented the highest kappa values for all rapid assays using sera samples. When using serum, the sensitivity values were higher than 93.40 for G I, 60.00 % for G II and 66.77 % for G III, and the specificity values were higher than 99.50 for GI, 97.20 for G II and 99.10 % for G III for all tests. For whole blood samples & the Vikia® HBsAg assay, the best performance was achieved for GIII (k = 79.75 %). For saliva samples, the Imuno-Rápido HBsAg® assay showed the highest concordance values with EIA for G I (40.68 %) and G II (32.20 %). The reproducibility and repeatability of all RTs for serum and saliva were excellent, and the concordance between HBsAg EIAs and RTs using samples reactive with other infectious agents varied from 70.10 % to 100.00 %. CONCLUSIONS: The overall performance of RTs for HBsAg in serum was high/moderately high for all groups, thereby promoting increased access to HBV diagnosis among vulnerable populations as well as samples from individuals in emergency settings or remote areas. Rapid tests for HBsAg using whole blood could be used in prevalence studies, though these assays should not be used for saliva samples. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12879-015-1249-5) contains supplementary material, which is available to authorized users

    Antibody phage display assisted identification of junction plakoglobin as a potential biomarker for atherosclerosis

    Get PDF
    To date, no plaque-derived blood biomarker is available to allow diagnosis, prognosis or monitoring of atherosclerotic vascular diseases. In this study, specimens of thrombendarterectomy material from carotid and iliac arteries were incubated in protein-free medium to obtain plaque and control secretomes for subsequent subtractive phage display. The selection of nine plaque secretome-specific antibodies and the analysis of their immunopurified antigens by mass spectrometry led to the identification of 22 proteins. One of them, junction plakoglobin (JUP-81) and its smaller isoforms (referred to as JUP-63, JUP-55 and JUP-30 by molecular weight) were confirmed by immunohistochemistry and immunoblotting with independent antibodies to be present in atherosclerotic plaques and their secretomes, coronary thrombi of patients with acute coronary syndrome (ACS) and macrophages differentiated from peripheral blood monocytes as well as macrophage-like cells differentiated from THP1 cells. Plasma of patients with stable coronary artery disease (CAD) (n = 15) and ACS (n = 11) contained JUP-81 at more than 2- and 14-fold higher median concentrations, respectively, than plasma of CAD-free individuals (n = 13). In conclusion, this proof of principle study identified and verified JUP isoforms as potential plasma biomarkers for atherosclerosis. Clinical validation studies are needed to determine its diagnostic efficacy and clinical utility as a biomarker for diagnosis, prognosis or monitoring of atherosclerotic vascular diseases

    Healthy vascular ageing and early vascular ageing

    No full text
    Chronological age is an important independent predictor of cardiovascular events. Although the cumulative effect of cardiovascular risk factors over time partly explains this relationship, accumulating evidence suggests this is a simplistic interpretation of a more complex concept. With advancing age slowly progressive changes can be seen affecting the structure and function of large and small vessels as well as the phenotype of various cell lines. It is important to note that these changes occur at different rates depending on the clinical context and can be detected much earlier in individuals affected by chronic metabolic or vascular diseases. Determining ‘vascular age’ may therefore be an important tool for cardiovascular risk stratification. This chapter will review the cellular, functional and structural effects of ageing on the vasculature, clinical and research tools for assessing aspects of vascular age, the concept of ‘early vascular ageing’ and associated clinical conditions and pathways to achieve healthy vascular ageing
    corecore