384 research outputs found

    Toward Improved Lifetimes of Organic Solar Cells under Thermal Stress: Substrate-Dependent Morphological Stability of PCDTBT:PCBM Films and Devices

    Get PDF
    Morphological stability is a key requirement for outdoor operation of organic solar cells. We demonstrate that morphological stability and lifetime of polymer/fullerene based solar cells under thermal stress depend strongly on the substrate interface on which the active layer is deposited. In particular, we find that the stability of benchmark PCDTBT/PCBM solar cells under modest thermal stress is substantially increased in inverted solar cells employing a ZnO substrate compared to conventional devices employing a PEDOT:PSS substrate. This improved stability is observed to correlate with PCBM nucleation at the 50 nm scale, which is shown to be strongly influenced by different substrate interfaces. Employing this approach, we demonstrate remarkable thermal stability for inverted PCDTBT:PC70BM devices on ZnO substrates, with negligible (<2%) loss of power conversion efficiency over 160 h under 85 °C thermal stress and minimal thermally induced “burn-in” effect. We thus conclude that inverted organic solar cells, in addition to showing improved environmental stability against ambient humidity exposure as widely reported previously, can also demonstrate enhanced morphological stability. As such we show that the choice of suitable substrate interfaces may be a key factor in achieving prolonged lifetimes for organic solar cells under thermal stress conditions

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Relational persons and relational processes: developing the notion of relationality for the sociology of personal life

    Get PDF
    The concept of relationality has recently found widespread favour in British sociology, particularly in the emergent sub-field of the sociology of personal life, which is characterised by its attachment to the concept. However, this ‘relational turn’ is under-theorized and pays little attention to the substantial history of relational thinking across the human sciences. This paper argues that the notion of relationality in the sociology of personal life might be strengthened by an exploration of the conceptualization of the relational person and relational processes offered by three bodies of literature: the process oriented thinking of American pragmatism, specifically of Mead and Emirbayer; the figurational sociology of Elias; and psychoanalysis, particularly the object relations tradition, contemporary relational psychoanalysis and Ettinger’s notion of transubjectivity. The paper attends particularly to the processes involved in the individuality, agentic reflexivity and affective dimensions of the relational person

    Structural valve deterioration of a mitral Carpentier-Edwards pericardial bioprosthesis in an 87-year-old woman 16 years after its implantation

    Get PDF
    The second-generation pericardial valve, the Carpentier-Edwards perimount bioprosthetic (CEP) valve, shows dramatically improved durability as compared to the first-generation pericardial valve, and excellent performance has been obtained, in both the aortic and mitral positions. Especially in elderly patients with an implanted CEP valve, reoperation due to structural valve deterioration (SVD) is rarely required. Here, we report the case of an 87-year-old woman with an explanted CEP valve in the mitral position due to SVD, 16 years after its implantation

    Effects of peripheral nerve injury on parvalbumin expression in adult rat dorsal root ganglion neurons

    Get PDF
    Background: Parvalbumin (PV) is a calcium binding protein that identifies a subpopulation of proprioceptive dorsal root ganglion (DRG) neurons. Calcitonin gene-related peptide (CGRP) is also expressed in a high proportion of muscle afferents but its relationship to PV is unclear. Little is known of the phenotypic responses of muscle afferents to nerve injury. Sciatic nerve axotomy or L5 spinal nerve ligation and section (SNL) lesions were used to explore these issues in adult rats using immunocytochemistry. Results: In naive animals, the mean PV expression was 25 % of L4 or L5 dorsal root ganglion (DRG) neurons, and this was unchanged 2 weeks after sciatic nerve axotomy. Colocalization studies with the injury marker activating transcription factor 3 (ATF3) showed that approximately 24 % of PV neurons expressed ATF3 after sciatic nerve axotomy suggesting that PV may show a phenotypic switch from injured to uninjured neurons. This possibility was further assessed using the spinal nerve ligation (SNL) injury model where injured and uninjured neurons are located in different DRGs. Two weeks after L5 SNL there was no change in total PV staining and essentially all L5 PV neurons expressed ATF3. Additionally, there was no increase in PV-ir in the adjacent uninjured L4 DRG cells. Co-labelling of DRG neurons revealed that less than 2 % of PV neurons normally expressed CGRP and no colocalization was seen after injury. Conclusion: These experiments clearly show that axotomy does not produce down regulation of PV protein in the DRG. Moreover, this lack of change is not due to a phenotypic switch in PV immunoreactive (ir) neurons, or de novo expression of PV-ir in uninjured neurons after nerve injury. These results further illustrate differences that occur when muscle afferents are injured as compared to cutaneous afferents

    Indication of Electron Neutrino Appearance from an Accelerator-Produced Off-Axis Muon Neutrino Beam

    Get PDF
    The T2K experiment observes indications of nu(mu) -> nu(mu) e appearance in data accumulated with 1.43 x 10(20) protons on target. Six events pass all selection criteria at the far detector. In a three-flavor neutrino oscillation scenario with |Delta m(23)(2)| = 2.4 x 10(-3) eV(2), sin(2)2 theta(23) = 1 and sin(2)2 theta(13) = 0, the expected number of such events is 1.5 +/- 0.3(syst). Under this hypothesis, the probability to observe six or more candidate events is 7 x 10(-3), equivalent to 2.5 sigma significance. At 90% C.L., the data are consistent with 0.03(0.04) < sin(2)2 theta(13) < 0.28(0.34) for delta(CP) = 0 and a normal (inverted) hierarchy

    P3HT-Based Solar Cells: Structural Properties and Photovoltaic Performance

    Full text link
    Each year we are bombarded with B.Sc. and Ph.D. applications from students that want to improve the world. They have learned that their future depends on changing the type of fuel we use and that solar energy is our future. The hope and energy of these young people will transform future energy technologies, but it will not happen quickly. Organic photovoltaic devices are easy to sketch, but the materials, processing steps, and ways of measuring the properties of the materials are very complicated. It is not trivial to make a systematic measurement that will change the way other research groups think or practice. In approaching this chapter, we thought about what a new researcher would need to know about organic photovoltaic devices and materials in order to have a good start in the subject. Then, we simplified that to focus on what a new researcher would need to know about poly-3-hexylthiophene:phenyl-C61-butyric acid methyl ester blends (P3HT: PCBM) to make research progress with these materials. This chapter is by no means authoritative or a compendium of all things on P3HT:PCBM. We have selected to explain how the sample fabrication techniques lead to control of morphology and structural features and how these morphological features have specific optical and electronic consequences for organic photovoltaic device applications
    corecore