4,493 research outputs found
Differences in the Activity of Endogenous Bone Morphogenetic Protein Signaling Impact on the Ability of Induced Pluripotent Stem Cells to Differentiate to Corneal Epithelial-Like Cells
Cornea is a clear outermost layer of the eye which enables transmission of light onto the retina. The transparent corneal epithelium is regenerated by limbal stem cells (LSCs), whose loss/dysfunction results in LSCs deficiency (LSCD). Ex vivo expansion of autologous LSCs obtained from patient's healthy eye followed by transplantation onto the LSCs damaged/deficient eye, has provided a successful treatment for unilateral LSCD. However, this is not applicable to patient with total bilateral LSCD, where LSCs are lost/damaged from both eyes. We investigated the potential of human induced pluripotent stem cell (hiPSC) to differentiate into corneal epithelial-like cells as a source of autologous stem cell treatment for patients with total bilateral LSCD. Our study showed that combined addition of bone morphogenetic protein 4 (BMP4), all trans-retinoic acid and epidermal growth factor for the first 9 days of differentiation followed by cell-replating on collagen-IV-coated surfaces with a corneal-specific-epithelial cell media for an additional 11 days, resulted in step wise differentiation of human embryonic stem cells (hESC) to corneal epithelial progenitors and mature corneal epithelial-like cells. We observed differences in the ability of hiPSC lines to undergo differentiation to corneal epithelial-like cells which were dependent on the level of endogenous BMP signaling and could be restored via the activation of this signaling pathway by a specific transforming growth factor β inhibitor (SB431542). Together our data reveal a differential ability of hiPSC lines to generate corneal epithelial cells which is underlined by the activity of endogenous BMP signaling pathway
Geometric phase outside a Schwarzschild black hole and the Hawking effect
We study the Hawking effect in terms of the geometric phase acquired by a
two-level atom as a result of coupling to vacuum fluctuations outside a
Schwarzschild black hole in a gedanken experiment. We treat the atom in
interaction with a bath of fluctuating quantized massless scalar fields as an
open quantum system, whose dynamics is governed by a master equation obtained
by tracing over the field degrees of freedom. The nonunitary effects of this
system are examined by analyzing the geometric phase for the Boulware, Unruh
and Hartle-Hawking vacua respectively. We find, for all the three cases, that
the geometric phase of the atom turns out to be affected by the space-time
curvature which backscatters the vacuum field modes. In both the Unruh and
Hartle-Hawking vacua, the geometric phase exhibits similar behaviors as if
there were thermal radiation at the Hawking temperature from the black hole.
So, a measurement of the change of the geometric phase as opposed to that in a
flat space-time can in principle reveal the existence of the Hawking radiation.Comment: 14 pages, no figures, a typo in the References corrected, version to
appear in JHEP. arXiv admin note: text overlap with arXiv:1109.033
Ambient fabrication of flexible and large-area organic light-emitting devices using slot-die coating
The grand vision of manufacturing large-area emissive devices with low-cost roll-to-roll coating methods, akin to how newspapers are produced, appeared with the emergence of the organic light-emitting diode about 20 years ago. Today, small organic light-emitting diode displays are commercially available in smartphones, but the promise of a continuous ambient fabrication has unfortunately not materialized yet, as organic light-emitting diodes invariably depend on the use of one or more time- and energy-consuming process steps under vacuum. Here we report an all-solution-based fabrication of an alternative emissive device, a light-emitting electrochemical cell, using a slot-die roll-coating apparatus. The fabricated flexible sheets exhibit bidirectional and uniform light emission, and feature a fault-tolerant >1-μm-thick active material that is doped in situ during operation. It is notable that the initial preparation of inks, the subsequent coating of the constituent layers and the final device operation all could be executed under ambient air
Recommended from our members
Mapping the inhomogeneous electrochemical reaction through porous LiFePO<inf>4</inf>-electrodes in a standard coin cell battery
[Image - see article]
Nanosized, carbon-coated LiFePO4 (LFP) is a promising cathode for Li-ion batteries. However, nano-particles are problematic for electrode design, optimized electrodes requiring high tap densities, good electronic wiring, and a low tortuosity for efficient Li diffusion in the electrolyte in between the solid particles, conditions that are difficult to achieve simultaneously. Using in situ energy-dispersive X-ray diffraction, we map the evolution of the inhomogeneous electrochemical reaction in LFP-electrodes. On the first cycle, the dynamics are limited by Li diffusion in the electrolyte at a cycle rate of C/7. On the second cycle, there appear to be two rate-limiting processes: Li diffusion in the electrolyte and electronic conductivity through the electrode. Three-dimensional modeling based on porous electrode theory shows that this change in dynamics can be reproduced by reducing the electronic conductivity of the composite electrode by a factor of 8 compared to the first cycle. The poorer electronic wiring could result from the expansion and contraction of the particles upon cycling and/or the formation of a solid-electrolyte interphase layer. A lag was also observed perpendicular to the direction of the current: the LFP particles at the edges of the cathode reacted preferentially to those in the middle, owing to the closer proximity to the electrolyte source. Simulations show that, at low charge rates, the reaction becomes more uniformly distributed across the electrode as the porosity or the width of the particle-size distribution is increased. However, at higher rates, the reaction becomes less uniform and independent of the particle-size distribution.We acknowledge the Engineering Physical Science Research Council (EPSRC) for a Doctoral Training Account Award (for FCS) and the US Department of Energy (DOE) for support via the NECCES, an Energy Frontier Research Center (DE-SC0001294 and DE-SC0012583). FCS acknowledges the Science and Technology Facilities Council for travel funding through the Global Challenge Network in Batteries and Electrochemical Energy Devices. Synchrotron X-ray beamtime was provided by Diamond Light Source, under experiment number EE8385. We also thank Zlatko Saracevic at the Department of Chemical Engineering at the University of Cambridge for help with the BET experiments and Jon Rickard at the Department of Physics at the University of Cambridge for help with the SEM. Lastly; we thank Charles Monroe and Paul Shearing for discussions on this project.This is the final version of the article. It first appeared from ACS Publications via http://dx.doi.org/10.1021/cm504317
Gene expression and splicing alterations analyzed by high throughput RNA sequencing of chronic lymphocytic leukemia specimens.
BackgroundTo determine differentially expressed and spliced RNA transcripts in chronic lymphocytic leukemia specimens a high throughput RNA-sequencing (HTS RNA-seq) analysis was performed.MethodsTen CLL specimens and five normal peripheral blood CD19+ B cells were analyzed by HTS RNA-seq. The library preparation was performed with Illumina TrueSeq RNA kit and analyzed by Illumina HiSeq 2000 sequencing system.ResultsAn average of 48.5 million reads for B cells, and 50.6 million reads for CLL specimens were obtained with 10396 and 10448 assembled transcripts for normal B cells and primary CLL specimens respectively. With the Cuffdiff analysis, 2091 differentially expressed genes (DEG) between B cells and CLL specimens based on FPKM (fragments per kilobase of transcript per million reads and false discovery rate, FDR q < 0.05, fold change >2) were identified. Expression of selected DEGs (n = 32) with up regulated and down regulated expression in CLL from RNA-seq data were also analyzed by qRT-PCR in a test cohort of CLL specimens. Even though there was a variation in fold expression of DEG genes between RNA-seq and qRT-PCR; more than 90 % of analyzed genes were validated by qRT-PCR analysis. Analysis of RNA-seq data for splicing alterations in CLL and B cells was performed by Multivariate Analysis of Transcript Splicing (MATS analysis). Skipped exon was the most frequent splicing alteration in CLL specimens with 128 significant events (P-value <0.05, minimum inclusion level difference >0.1).ConclusionThe RNA-seq analysis of CLL specimens identifies novel DEG and alternatively spliced genes that are potential prognostic markers and therapeutic targets. High level of validation by qRT-PCR for a number of DEG genes supports the accuracy of this analysis. Global comparison of transcriptomes of B cells, IGVH non-mutated CLL (U-CLL) and mutated CLL specimens (M-CLL) with multidimensional scaling analysis was able to segregate CLL and B cell transcriptomes but the M-CLL and U-CLL transcriptomes were indistinguishable. The analysis of HTS RNA-seq data to identify alternative splicing events and other genetic abnormalities specific to CLL is an added advantage of RNA-seq that is not feasible with other genome wide analysis
Formation of Supermassive Black Holes
Evidence shows that massive black holes reside in most local galaxies.
Studies have also established a number of relations between the MBH mass and
properties of the host galaxy such as bulge mass and velocity dispersion. These
results suggest that central MBHs, while much less massive than the host (~
0.1%), are linked to the evolution of galactic structure. In hierarchical
cosmologies, a single big galaxy today can be traced back to the stage when it
was split up in hundreds of smaller components. Did MBH seeds form with the
same efficiency in small proto-galaxies, or did their formation had to await
the buildup of substantial galaxies with deeper potential wells? I briefly
review here some of the physical processes that are conducive to the evolution
of the massive black hole population. I will discuss black hole formation
processes for `seed' black holes that are likely to place at early cosmic
epochs, and possible observational tests of these scenarios.Comment: To appear in The Astronomy and Astrophysics Review. The final
publication is available at http://www.springerlink.co
Compare HIV/syphilis infections between age groups and explore associated factors of HIV/ syphilis co-infections among men who have sex with men in Shenzhen, China, from 2009 to 2017
The aim of this study is to assess the HIV/syphilis epidemic among men who have sex with men (MSM) aged <50 years and ≥ 50 years in Shenzhen, and explore the associated factors of HIV/syphilis co-infections among MSM in Shenzhen, in order to help prevention and intervention programs determine their target sub-group. A serial cross-sectional study was conducted on MSM in Shenzhen city, China from 2009 to 2017. A questionnaire was used to collect demographic characteristics, history of HIV testing, history of blood donation and sexual behaviors. 5 ml of venous blood were collected for syphilis and HIV tests. The overall prevalence of HIV, syphilis, HIV/syphilis co-infection was 9.40%, 18.97%, and 4.91%, respectively. The prevalence of HIV (15.26%), syphilis (27.71%), HIV/syphilis co-infection (9.24%) in aged ≥ 50 years MSM was significantly higher than aged <50 years MSM (9.15%, 18.59% and 4.72%, respectively). The following factors were found to be significantly associated with HIV/syphilis co-infections (P<0.05): age≥50 years (OR = 1.78, 95% CI = 1.10–2.87), high school or lower (OR = 1.49, 95% CI = 1.10–2.01), monthly income ≤436.2 USD (OR = 1.74, 95% CI = 1.25–2.42), monthly income 436.4–727.2 USD (OR = 1.46, 95% CI = 1.05–2.03), ≥2 anal sex partners in the past 6 months (OR = 1.59, 95% CI = 1.02–2.49), ≥2 oral sex partners in the past 6 months (OR = 1.60, 95% CI = 1.08–2.36), inconsistent condom use during anal sex in the past 6 months (OR = 1.50, 95% CI = 1.11–2.03). We found that aged <50 years and ≥50 years MSM in Shenzhen had a high prevalence of HIV/syphilis infection in a period from 2009 to 2017. Age-specific sexually transmitted diseases education, prevention, and intervention programs for aged ≥50 years MSM should be implemented urgently and integrated interventions of both HIV and syphilis infections on MSM are needed in the future
Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector
The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV
Strange Attractors in Dissipative Nambu Mechanics : Classical and Quantum Aspects
We extend the framework of Nambu-Hamiltonian Mechanics to include dissipation
in phase space. We demonstrate that it accommodates the phase space
dynamics of low dimensional dissipative systems such as the much studied Lorenz
and R\"{o}ssler Strange attractors, as well as the more recent constructions of
Chen and Leipnik-Newton. The rotational, volume preserving part of the flow
preserves in time a family of two intersecting surfaces, the so called {\em
Nambu Hamiltonians}. They foliate the entire phase space and are, in turn,
deformed in time by Dissipation which represents their irrotational part of the
flow. It is given by the gradient of a scalar function and is responsible for
the emergence of the Strange Attractors.
Based on our recent work on Quantum Nambu Mechanics, we provide an explicit
quantization of the Lorenz attractor through the introduction of
Non-commutative phase space coordinates as Hermitian matrices in
. They satisfy the commutation relations induced by one of the two
Nambu Hamiltonians, the second one generating a unique time evolution.
Dissipation is incorporated quantum mechanically in a self-consistent way
having the correct classical limit without the introduction of external degrees
of freedom. Due to its volume phase space contraction it violates the quantum
commutation relations. We demonstrate that the Heisenberg-Nambu evolution
equations for the Quantum Lorenz system give rise to an attracting ellipsoid in
the dimensional phase space.Comment: 35 pages, 4 figures, LaTe
Observation of associated near-side and away-side long-range correlations in √sNN=5.02 TeV proton-lead collisions with the ATLAS detector
Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02 TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1 μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos2Δϕ modulation for all ΣETPb ranges and particle pT
- …
