396 research outputs found
Direct imaging of changes in aerosol particle viscosity upon hydration and chemical aging
Organic aerosol particles (OA) play major roles in atmospheric chemistry, climate, and public health. Aerosol particle viscosity is highly important since it can determine the ability of chemical species such as oxidants, organics or water to diffuse into the particle bulk. Recent measurements indicate that OA may be present in highly viscous states, however, diffusion rates of small molecules such as water are not limited by these high viscosities. Direct observational evidence of kinetic barriers caused by high viscosity and low diffusivity in aerosol particles were not available until recently; and techniques that are able to dynamically quantify and track viscosity changes during atmospherically relevant processes are still unavailable for atmospheric aerosols. Here we report quantitative, real-time, online observations of microscopic viscosity changes in aerosol particles of atmospherically relevant composition, using fluorescence lifetime imaging (FLIM) of viscosity. We show that microviscosity in ozonated oleic acid droplets and secondary organic aerosol (SOA) particles formed by ozonolysis of myrcene increases substantially with decreasing humidity and atmospheric oxidative aging processes. Furthermore, we found unexpected heterogeneities of microviscosity inside individual aerosol particles. The results of this study enhance our understanding of organic aerosol processes on microscopic scales and may have important implications for the modeling of atmospheric aerosol growth, composition and interactions with trace gases and clouds.Engineering and Physical Sciences Research Council (Career Acceleration Fellowship (Grant ID: EP/I003983/1), Prize studentship), Natural Environment Research Council (Studentship NE/J500070/1), European Research Council (Grant ID: 279405), Max Planck Society, European Union project PEGASOS (Grant ID: 265148
Barriers to the provision of smoking cessation assistance:A qualitative study among Romanian family physicians
BACKGROUND: Smoking cessation is the most effective intervention to prevent and slow down the progression of several respiratory and other diseases and improve patient outcomes. Romania has legislation and a national tobacco control programme in line with the World Health Organization Framework for Tobacco Control. However, few smokers are advised to quit by their family physicians (FPs). AIM: To identify and explore the perceived barriers that prevent Romanian FPs from engaging in smoking cessation with patients. METHODS: A qualitative study was undertaken. A total of 41 FPs were recruited purposively from Bucharest and rural areas within 600 km of the city. Ten FPs took part in a focus group and 31 participated in semistructured interviews. Analysis was descriptive, inductive and themed, according to the barriers experienced. RESULTS: Five main barriers were identified: limited perceived role for FPs; lack of time during consultations; past experience and presence of disincentives; patients' inability to afford medication; and lack of training in smoking cessation skills. Overarching these specific barriers were key themes of a medical and societal hierarchy, which undermined the FP role, stretched resources and constrained care. CONCLUSIONS: Many of the barriers described by the Romanian FPs reflected universally recognised challenges to the provision of smoking cessation advice. The context of a relatively hierarchical health-care system and limitations of time and resources exacerbated many of the problems and created new barriers that will need to be addressed if Romania is to achieve the aims of its National Programme Against Tobacco Consumption
Traffic pollution: A search for solutions for a city like Nairobi
Congestion and traffic-related pollution are typically the largest contributors to air pollution in cities. Rapid urbanization in developing countries has caused large-scale proliferation in motor vehicle use making cities increasingly congested and, subsequently, polluted. There is a growing awareness that the air quality status quo in East African cities is unacceptable. This paper uses the case of Nairobi, Kenya to discuss current traffic pollution challenges and how they may be addressed. The paper begins with an overview of urbanization and pollution effects. It goes on to look at the specific case of Nairobi as it searches for solutions to the negative impacts of pollution through a lens which sees resolution of congestion effects as key to amelioration of traffic-related air pollution. It suggests that a combination of infrastructure, policy, regulatory and softer measures may provide the most effective way to address traffic congestion and, thus, traffic pollution. In addition, the paper highlights the need for further research into the lived experience of negotiating daily life in Nairobi, as well as further exploration of the social, economic and environmental feasibility of potential solutions for the city. While Nairobi is used as the case study city, the lessons learned are generalized for cities in the East African region, which often share similar traits of congestion and traffic related pollution
A Qualitative Study of an Integrated Maternity, Drugs and Social Care Service for Drug-using Women
Background: The care of drug-using pregnant women is a growing health and social care concern in many countries. A specialist clinic was established offering multidisciplinary care and advice to pregnant drug users in and around Aberdeen (UK) in 1997. The majority of women stabilise and reduce their drug use. By determining the needs and views of the women more appropriate
services and prevention strategies may be developed. There has been little research conducted in this area and none in Scotland.
Methods: This is a qualitative study that aimed to gain an understanding of the experiences of women drug users, seeking and receiving prenatal care and drug services from a specialist clinic. Twelve women participated in semi-structured one-to-one interviews.
Results: The women preferred the multidisciplinary clinic (one-stop shop) to traditional prenatal care centred within General Practice. The relationships of the clients to the range of Clinic professionals and in hospital were explored as well as attitudes to Clinic care. The study
participants attributed success in reducing their drug use to the combination of different aspects of care of the multi-agency clinic, especially the high level prenatal support. It is this arrangement of all aspects of care together that seem to produce better outcomes for mother and child than single care elements delivered separately. Some women reported that their pregnancy encouraged them
to rapidly detoxify due to the guilt experienced. The most important aspects of the Clinic care were found to be non-judgemental attitude of staff, consistent staff, high level of support, reliable information and multi-agency integrated care.
Conclusion: There is an impetus for women drug users to change lifestyle during pregnancy. The study highlighted a need for women to have access to reliable information on the effects of drugs on the baby.
Further research is required to determine whether positive outcomes related to clinic attendance in the prenatal period are sustained in the postnatal period. Early referral to a specialist clinic is of benefit to the women, as they reported to receive more appropriate care, especially in relation to their drug use. A greater awareness of needs of the pregnant drug user could help the design of more effective prevention strategies
Recommended from our members
A risk-based framework for assessing the effectiveness of stratospheric aerosol geoengineering
Open Access journalCopyright: © 2014 Ferraro et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Geoengineering by stratospheric aerosol injection has been proposed as a policy response to warming from human emissions of greenhouse gases, but it may produce unequal regional impacts. We present a simple, intuitive risk-based framework for classifying these impacts according to whether geoengineering increases or decreases the risk of substantial climate change, with further classification by the level of existing risk from climate change from increasing carbon dioxide concentrations. This framework is applied to two climate model simulations of geoengineering counterbalancing the surface warming produced by a quadrupling of carbon dioxide concentrations, with one using a layer of sulphate aerosol in the lower stratosphere, and the other a reduction in total solar irradiance. The solar dimming model simulation shows less regional inequality of impacts compared with the aerosol geoengineering simulation. In the solar dimming simulation, 10% of the Earth's surface area, containing 10% of its population and 11% of its gross domestic product, experiences greater risk of substantial precipitation changes under geoengineering than under enhanced carbon dioxide concentrations. In the aerosol geoengineering simulation the increased risk of substantial precipitation change is experienced by 42% of Earth's surface area, containing 36% of its population and 60% of its gross domestic product.Natural Environment Research Council (NERC
Real-world assessment of vehicle air pollutant emissions subset by vehicle type, fuel and EURO class: New findings from the recent UK EDAR field campaigns, and implications for emissions restricted zones
This paper reports upon and analyses vehicle emissions measured by the Emissions Detecting and Reporting (EDAR) system, a Vehicle Emissions Remote Sensing System (VERSS) type device, used in five UK based field campaigns in 2016 and 2017. In total 94,940 measurements were made of 75,622 individual vehicles during the five campaigns. The measurements are subset into vehicle type (bus, car, HGV, minibus, motorcycle, other, plant, taxi, van, and unknown), fuel type for car (petrol and diesel), and EURO class, and particulate matter (PM), nitric oxide (NO) and nitrogen dioxide (NO2) are reported. In terms of recent EURO class emission trends, NO and NOx emissions decrease from EURO 5 to EURO 6 for nearly all vehicle categories. Interestingly, taxis show a marked increase in NO2 emissions from EURO 5 to EURO 6. Perhaps most concerningly is a marked increase in PM emissions from EURO 5 to EURO 6 for HGVs. Another noteworthy observation was that vans, buses and HGVs of unknown EURO class were often the dirtiest vehicles in their classes, suggesting that where counts of such vehicles are high, they will likely make a significant contribution to local emissions. Using Vehicle Specific Power (VSP) weighting we provide an indication of the magnitude of the on-site VERSS bias and also a closer estimate of the regulatory test/on-road emissions differences. Finally, a new ‘EURO Updating Potential’ (EUP) factor is introduced, to assess the effect of a range of air pollutant emissions restricted zones either currently in use or marked for future introduction. In particular, the effects of the London based Low Emission Zone (LEZ) and Ultra-Low Emissions Zone (ULEZ), and the proposed Birmingham based Clean Air Zone (CAZ) are estimated. With the current vehicle fleet, the impacts of the ULEZ and CAZ will be far more significant than the LEZ, which was introduced in 2008
Detecting high emitting vehicle subsets using emission remote sensing systems
It is often assumed that a small proportion of a given vehicle fleet produces a disproportionate amount of air pollution emissions. If true, policy actions to target the highly polluting section of the fleet could lead to significant improvements in air quality. In this paper, high-emitter vehicle subsets are defined and their contributions to the total fleet emission are assessed. A new approach, using enrichment factor in cumulative Pareto analysis is proposed for detecting high emitter vehicle subsets within the vehicle fleet. A large dataset (over 94,000 remote-sensing measurements) from five UK-based EDAR (emission detecting and reporting system) field campaigns for the years 2016–17 is used as the test data. In addition to discussions about the high emitter screening criteria, the data analysis procedure and future issues of implementation are discussed. The results show different high emitter trends dependent on the pollutant investigated, and the vehicle type investigated. For example, the analysis indicates that 23 % and 51 % of petrol and diesel cars were responsible for 80 % of NO emissions within that subset of the fleet, respectively. Overall, the contributions of vehicles that account for 80 % of total fleet emissions usually reduce with EURO class improvement, with the subset fleet emissions becoming more homogenous. The high emitter constituent was more noticeable for pollutant PM compared with the other gaseous pollutants, and it was also more prominent for petrol cars when compared to diesel ones
Search for Second-Generation Scalar Leptoquarks in Collisions at =1.96 TeV
Results on a search for pair production of second generation scalar
leptoquark in collisions at =1.96 TeV are reported. The
data analyzed were collected by the CDF detector during the 2002-2003 Tevatron
Run II and correspond to an integrated luminosity of 198 pb. Leptoquarks
(LQ) are sought through their decay into (charged) leptons and quarks, with
final state signatures represented by two muons and jets and one muon, large
transverse missing energy and jets. We observe no evidence for production
and derive 95% C.L. upper limits on the production cross sections as well
as lower limits on their mass as a function of , where is the
branching fraction for .Comment: 9 pages (3 author list) 5 figure
Measurement of the B0 anti-B0 oscillation frequency using l- D*+ pairs and lepton flavor tags
The oscillation frequency Delta-md of B0 anti-B0 mixing is measured using the
partially reconstructed semileptonic decay anti-B0 -> l- nubar D*+ X. The data
sample was collected with the CDF detector at the Fermilab Tevatron collider
during 1992 - 1995 by triggering on the existence of two lepton candidates in
an event, and corresponds to about 110 pb-1 of pbar p collisions at sqrt(s) =
1.8 TeV. We estimate the proper decay time of the anti-B0 meson from the
measured decay length and reconstructed momentum of the l- D*+ system. The
charge of the lepton in the final state identifies the flavor of the anti-B0
meson at its decay. The second lepton in the event is used to infer the flavor
of the anti-B0 meson at production. We measure the oscillation frequency to be
Delta-md = 0.516 +/- 0.099 +0.029 -0.035 ps-1, where the first uncertainty is
statistical and the second is systematic.Comment: 30 pages, 7 figures. Submitted to Physical Review
Comprehensive modeling study of ozonolysis of oleic acid aerosol based on real-time, online measurements of aerosol composition
The chemical composition of organic aerosols profoundly influences their atmospheric properties, but a detailed understanding of heterogeneous and in-particle reactivity is lacking. We present here a combined experimental and modeling study of the ozonolysis of oleic acid particles. An online mass spectrometry (MS) method, Extractive Electrospray Ionization (EESI), is used to follow the composition of the aerosol at a molecular level in real time; relative changes in the concentrations of both reactants and products are determined during aerosol aging. The results show evidence for multiple non-first-order reactions involving stabilized Criegee intermediates, including the formation of secondary ozonides and other oligomers. Offline liquid chromatography MS is used to confirm the online MS assignment of the monomeric and dimeric products. We explain the observed EESI-MS chemical composition changes, and chemical and physical data from previous studies, using a process-based aerosol chemistry simulation, the Pretty Good Aerosol Model (PG-AM). In particular, we extend previous studies of reactant loss by demonstrating success in reproducing the time dependence of product formation and the evolving particle size. This advance requires a comprehensive chemical scheme coupled to the partitioning of semivolatile products; relevant reaction and evaporation parameters have been refined using our new measurements in combination with PG-AM.This work was supported by the UK Natural Environment Research Council (NERC grant NE/I528277/1) and the European Research Council (ERC starting grant 279405 and the Atmospheric Chemistry Climate Interactions (ACCI) project, grant 267760). PTG thanks NCAS Climate for support
- …
