19 research outputs found
Gamma-rays from millisecond pulsars in Globular Clusters
Globular clusters (GCs) with their ages of the order of several billion years
contain many final products of evolution of stars such as: neutron stars, white
dwarfs and probably also black holes. These compact objects can be at present
responsible for the acceleration of particles to relativistic energies.
Therefore, gamma-ray emission is expected from GCs as a result of radiation
processes occurring either in the inner magnetosperes of millisecond pulsars or
in the vicinity of accreting neutron stars and white dwarfs or as a result of
interaction of particles leaving the compact objects with the strong radiation
field within the GC. Recently, GeV gamma-ray emission has been detected from
several GCs by the new satellite observatory Fermi. Also Cherenkov telescopes
reported interesting upper limits at the TeV energies which start to constrain
the content of GCs. We review the results of these gamma-ray observations in
the context of recent scenarios for their origin.Comment: 20 pages, 9 figures, will be published in Astrophysics and Space
Science Series (Springer), eds. N. Rea and D.F. Torre
A single low-energy, iron-poor supernova as the source of metals in the star SMSS J 031300.36-670839.3
The element abundance ratios of four low-mass stars with extremely low
metallicities indicate that the gas out of which the stars formed was enriched
in each case by at most a few, and potentially only one low-energy, supernova.
Such supernovae yield large quantities of light elements such as carbon but
very little iron. The dominance of low-energy supernovae is surprising, because
it has been expected that the first stars were extremely massive, and that they
disintegrated in pair-instability explosions that would rapidly enrich galaxies
in iron. What has remained unclear is the yield of iron from the first
supernovae, because hitherto no star is unambiguously interpreted as
encapsulating the yield of a single supernova. Here we report the optical
spectrum of SMSS J031300.36- 670839.3, which shows no evidence of iron (with an
upper limit of 10^-7.1 times solar abundance). Based on a comparison of its
abundance pattern with those of models, we conclude that the star was seeded
with material from a single supernova with an original mass of ~60 Mo (and that
the supernova left behind a black hole). Taken together with the previously
mentioned low-metallicity stars, we conclude that low-energy supernovae were
common in the early Universe, and that such supernovae yield light element
enrichment with insignificant iron. Reduced stellar feedback both chemically
and mechanically from low-energy supernovae would have enabled first-generation
stars to form over an extended period. We speculate that such stars may perhaps
have had an important role in the epoch of cosmic reionization and the chemical
evolution of early galaxies.Comment: 28 pages, 6 figures, Natur
Two Stellar Components in the Halo of the Milky Way
The halo of the Milky Way provides unique elemental abundance and kinematic
information on the first objects to form in the Universe, which can be used to
tightly constrain models of galaxy formation and evolution. Although the halo
was once considered a single component, evidence for its dichotomy has slowly
emerged in recent years from inspection of small samples of halo objects. Here
we show that the halo is indeed clearly divisible into two broadly overlapping
structural components -- an inner and an outer halo -- that exhibit different
spatial density profiles, stellar orbits and stellar metallicities (abundances
of elements heavier than helium). The inner halo has a modest net prograde
rotation, whereas the outer halo exhibits a net retrograde rotation and a peak
metallicity one-third that of the inner halo. These properties indicate that
the individual halo components probably formed in fundamentally different ways,
through successive dissipational (inner) and dissipationless (outer) mergers
and tidal disruption of proto-Galactic clumps.Comment: Two stand-alone files in manuscript, concatenated together. The first
is for the main paper, the second for supplementary information. The version
is consistent with the version published in Natur
The stellar halo of the Galaxy
Stellar halos may hold some of the best preserved fossils of the formation
history of galaxies. They are a natural product of the merging processes that
probably take place during the assembly of a galaxy, and hence may well be the
most ubiquitous component of galaxies, independently of their Hubble type. This
review focuses on our current understanding of the spatial structure, the
kinematics and chemistry of halo stars in the Milky Way. In recent years, we
have experienced a change in paradigm thanks to the discovery of large amounts
of substructure, especially in the outer halo. I discuss the implications of
the currently available observational constraints and fold them into several
possible formation scenarios. Unraveling the formation of the Galactic halo
will be possible in the near future through a combination of large wide field
photometric and spectroscopic surveys, and especially in the era of Gaia.Comment: 46 pages, 16 figures. References updated and some minor changes.
Full-resolution version available at
http://www.astro.rug.nl/~ahelmi/stellar-halo-review.pd
Metal-Poor Stars and the Chemical Enrichment of the Universe
Metal-poor stars hold the key to our understanding of the origin of the
elements and the chemical evolution of the Universe. This chapter describes the
process of discovery of these rare stars, the manner in which their surface
abundances (produced in supernovae and other evolved stars) are determined from
the analysis of their spectra, and the interpretation of their abundance
patterns to elucidate questions of origin and evolution. More generally,
studies of these stars contribute to other fundamental areas that include
nuclear astrophysics, conditions at the earliest times, the nature of the first
stars, and the formation and evolution of galaxies -- including our own Milky
Way. We illustrate this with results from studies of lithium formed during the
Big Bang; of stars dated to within ~1 Gyr of that event; of the most metal-poor
stars, with abundance signatures very different from all other stars; and of
the build-up of the elements over the first several Gyr. The combination of
abundance and kinematic signatures constrains how the Milky Way formed, while
recent discoveries of extremely metal-poor stars in the Milky Way's dwarf
galaxy satellites constrain the hierarchical build-up of its stellar halo from
small dark-matter dominated systems. [abridged]Comment: Book chapter, emulated version, 34 pages; number of references are
limited by publisher; to appear in Vol. 5 of textbook "Planets, Stars and
Stellar Systems", by Springer, in 201
Shedding Light on the Galaxy Luminosity Function
From as early as the 1930s, astronomers have tried to quantify the
statistical nature of the evolution and large-scale structure of galaxies by
studying their luminosity distribution as a function of redshift - known as the
galaxy luminosity function (LF). Accurately constructing the LF remains a
popular and yet tricky pursuit in modern observational cosmology where the
presence of observational selection effects due to e.g. detection thresholds in
apparent magnitude, colour, surface brightness or some combination thereof can
render any given galaxy survey incomplete and thus introduce bias into the LF.
Over the last seventy years there have been numerous sophisticated
statistical approaches devised to tackle these issues; all have advantages --
but not one is perfect. This review takes a broad historical look at the key
statistical tools that have been developed over this period, discussing their
relative merits and highlighting any significant extensions and modifications.
In addition, the more generalised methods that have emerged within the last few
years are examined. These methods propose a more rigorous statistical framework
within which to determine the LF compared to some of the more traditional
methods. I also look at how photometric redshift estimations are being
incorporated into the LF methodology as well as considering the construction of
bivariate LFs. Finally, I review the ongoing development of completeness
estimators which test some of the fundamental assumptions going into LF
estimators and can be powerful probes of any residual systematic effects
inherent magnitude-redshift data.Comment: 95 pages, 23 figures, 3 tables. Now published in The Astronomy &
Astrophysics Review. This version: bring in line with A&AR format
requirements, also minor typo corrections made, additional citations and
higher rez images adde
