143 research outputs found
Genome-wide physical activity interactions in adiposity. A meta-analysis of 200,452 adults
Physical activity (PA) may modify the genetic effects that give rise to increased risk of obesity. To identify adiposity loci whose effects are modified by PA, we performed genome-wide interaction meta-analyses of BMI and BMI-adjusted waist circumference and waist-hip ratio from up to 200,452 adults of European (n = 180,423) or other ancestry (n = 20,029). We standardized PA by categorizing it into a dichotomous variable where, on average, 23% of participants were categorized as inactive and 77% as physically active. While we replicate the interaction with PA for the strongest known obesity-risk locus in the FTO gene, of which the effect is attenuated by similar to 30% in physically active individuals compared to inactive individuals, we do not identify additional loci that are sensitive to PA. In additional genome-wide meta-analyses adjusting for PA and interaction with PA, we identify 11 novel adiposity loci, suggesting that accounting for PA or other environmental factors that contribute to variation in adiposity may facilitate gene discovery.Peer reviewe
Genome-wide association and functional follow-up reveals new loci for kidney function
Chronic kidney disease (CKD) is an important public health problem with a genetic component. We performed genome-wide association studies in up to 130,600 European ancestry participants overall, and stratified for key CKD risk factors. We uncovered 6 new loci in association with estimated glomerular filtration rate (eGFR), the primary clinical measure of CKD, in or near MPPED2, DDX1, SLC47A1, CDK12, CASP9, and INO80. Morpholino knockdown of mpped2 and casp9 in zebrafish embryos revealed podocyte and tubular abnormalities with altered dextran clearance, suggesting a role for these genes in renal function. By providing new insights into genes that regulate renal function, these results could further our understanding of the pathogenesis of CKD
Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk.
Blood pressure is a heritable trait influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (≥140 mm Hg systolic blood pressure or ≥90 mm Hg diastolic blood pressure). Even small increments in blood pressure are associated with an increased risk of cardiovascular events. This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention
Effects of salt stress on plant growth, stomatal response and solute accumulation of different maize genotypes
Causal relationship between obesity and vitamin D status: bi-directional Mendelian randomization analysis of multiple cohorts.
BACKGROUND: Obesity is associated with vitamin D deficiency, and both are areas of active public health concern. We explored the causality and direction of the relationship between body mass index (BMI) and 25-hydroxyvitamin D [25(OH)D] using genetic markers as instrumental variables (IVs) in bi-directional Mendelian randomization (MR) analysis. METHODS AND FINDINGS: We used information from 21 adult cohorts (up to 42,024 participants) with 12 BMI-related SNPs (combined in an allelic score) to produce an instrument for BMI and four SNPs associated with 25(OH)D (combined in two allelic scores, separately for genes encoding its synthesis or metabolism) as an instrument for vitamin D. Regression estimates for the IVs (allele scores) were generated within-study and pooled by meta-analysis to generate summary effects. Associations between vitamin D scores and BMI were confirmed in the Genetic Investigation of Anthropometric Traits (GIANT) consortium (n = 123,864). Each 1 kg/m(2) higher BMI was associated with 1.15% lower 25(OH)D (p = 6.52×10⁻²⁷). The BMI allele score was associated both with BMI (p = 6.30×10⁻⁶²) and 25(OH)D (-0.06% [95% CI -0.10 to -0.02], p = 0.004) in the cohorts that underwent meta-analysis. The two vitamin D allele scores were strongly associated with 25(OH)D (p≤8.07×10⁻⁵⁷ for both scores) but not with BMI (synthesis score, p = 0.88; metabolism score, p = 0.08) in the meta-analysis. A 10% higher genetically instrumented BMI was associated with 4.2% lower 25(OH)D concentrations (IV ratio: -4.2 [95% CI -7.1 to -1.3], p = 0.005). No association was seen for genetically instrumented 25(OH)D with BMI, a finding that was confirmed using data from the GIANT consortium (p≥0.57 for both vitamin D scores). CONCLUSIONS: On the basis of a bi-directional genetic approach that limits confounding, our study suggests that a higher BMI leads to lower 25(OH)D, while any effects of lower 25(OH)D increasing BMI are likely to be small. Population level interventions to reduce BMI are expected to decrease the prevalence of vitamin D deficiency
THE SUSCEPTIBILITY OF RECENT ISOLATES OF Schistosoma mansoni TO PRAZIQUANTEL
Introduction: Schistosomiasis is a chronic disease caused by trematode flatworms of the genus Schistosoma and its control is dependent on a single drug, praziquantel (PZQ), but concerns over PZQ resistance have renewed interest in evaluating the in vitro susceptibility of recent isolates of Schistosoma mansoni to PZQ in comparison with well-established strains in the laboratory. Material and methods: The in vitro activity of PZQ (6.5-0.003 µg/mL) was evaluated in terms of mortality, reduced motor activity and ultrastructural alterations against S. mansoni. Results: After 3 h of incubation, PZQ, at 6.5 µg/mL, caused 100% mortality of all adult worms in the three types of recent isolates, while PZQ was inactive at concentrations of 0.08-0.003 µg/mL after 3 h of incubation. The results show that the SLM and Sotave isolates basically presented the same pattern of susceptibility, differing only in the concentration of 6.5 µg/mL, where deaths occurred from the range of 1.5 h in Sotave and just in the 3 h range of SLM. Additionally, this article presents ultrastructural evidence of rapid severe PZQ-induced surface membrane damage in S. mansoni after treatment with the drug, such as disintegration, sloughing, and erosion of the surface. Conclusion: According to these results, PZQ is very effective to induce tegument destruction of recent isolates of S. mansoni
Rare and low-frequency coding variants alter human adult height
Height is a highly heritable, classic polygenic trait with approximately 700 common associated variants identified through genome-wide association studies so far. Here, we report 83 height-associated coding variants with lower minor-allele frequencies (in the range of 0.1-4.8%) and effects of up to 2 centimetres per allele (such as those in IHH, STC2, AR and CRISPLD2), greater than ten times the average effect of common variants. In functional follow-up studies, rare height-increasing alleles of STC2 (giving an increase of 1-2 centimetres per allele) compromised proteolytic inhibition of PAPP-A and increased cleavage of IGFBP-4 in vitro, resulting in higher bioavailability of insulin-like growth factors. These 83 height-associated variants overlap genes that are mutated in monogenic growth disorders and highlight new biological candidates (such as ADAMTS3, IL11RA and NOX4) and pathways (such as proteoglycan and glycosaminoglycan synthesis) involved in growth. Our results demonstrate that sufficiently large sample sizes can uncover rare and low-frequency variants of moderate-to-large effect associated with polygenic human phenotypes, and that these variants implicate relevant genes and pathways.</p
Dinâmica pré e pós-colostral de parâmetros bioquímicos em cordeiros
This study aimed to verify the influence of colostrum in serum biochemical parameters in newborn lambs. Blood samples were taken of 28 lambs, determining the protein, energy and kidney function indicators, bilirrubins and the enzymes aspartate aminotransferase (AST), gamma-glutamyl transferase (GGT) and creatine kinase (CK), in pre and post-colostrum moments. The data were analyzed comparing the variability of the parameters between the two moments. There was an elevation (P<0.001) in total protein concentrations, in response to substantial increase (P<0.01) in total globulin levels, and a slight decrease (P<0.05) in albumin concentration, after colostral intake. We also observed higher values of total and conjugated bilirubins (P<0.001), and variation of kidney metabolites, with an elevation of urea levels (P<0.01) concomitant to decrease of creatinine values (P<0.001) in the post-colostrum moment. There was an increase (P<0.001) in glycemia, total cholesterol and triglycerides, as well as of the enzymatic activities (P<0.001) of AST and GGT, between the moments evaluated. In conclusion, the dynamics of biochemical profile in newborn lambs suffers the effect of colostrum intake and of adaptations of physiological functions to extrauterine life. The parameters values vary markedly in the postnatal period, being recommended to use proper reference values for this phase.O objetivo deste estudo foi verificar a influência do colostro nos parâmetros bioquímicos séricos em cordeiros recém-nascidos. Foram colhidas amostras sanguíneas de 28 cordeiros, determinando-se os indicadores proteicos, energéticos, de função renal, bilirrubinas e as enzimas aspartato aminotransferase (AST), gama-glutamiltransferase (GGT) e creatina quinase (CK), nos momentos pré e pós-colostro. Os dados foram analisados comparando-se a variabilidade dos parâmetros entre os dois momentos. Houve elevação (P<0,001) das concentrações de proteínas totais, em resposta ao forte aumento (P<0,01) dos teores de globulinas totais e ao leve decréscimo (P<0,05) da concentração de albumina, após a ingestão colostral. Também foram observados maiores valores de bilirrubinas total e direta (P<0,001), e variação dos metabólitos renais, com elevação dos níveis de ureia (P<0,01) concomitante à redução dos valores de creatinina (P<0,001), no momento pós-colostro. Houve aumento (P<0,001) da glicemia, de colesterol total e triglicerídeos, bem como das atividades enzimáticas (P<0,001) de AST e GGT, entre os momentos avaliados. Conclui-se que a dinâmica do perfil bioquímico em cordeiros recém-nascidos sofre o efeito da ingestão de colostro e da adaptação das funções fisiológicas à vida extra-uterina. Os valores dos parâmetros variam marcadamente no período pós-natal, sendo recomendável a utilização de valores de referência próprios para esta fase.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Universidade Federal do ParanáUniversidade Estadual Paulista Júlio de Mesquita FilhoUniversidade Federal do Paraná Laboratório de Patologia Clinica VeterináriaUniversidade Estadual Paulista Júlio de Mesquita Filh
Supplemental Ca2+ does not improve growth but it affects nutrient uptake in NaCl-stressed cowpea plants
- …
